Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 117102    DOI: 10.1088/0256-307X/29/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
First-Principles Study of Electronic Structure and Optical Properties of Cubic Perovskite CsCaF3
K. Ephraim Babu, A. Veeraiah, D. Tirupati Swamy, V. Veeraiah*
Modelling and Simulation in Materials Science Laboratory, Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
Cite this article:   
K. Ephraim Babu, A. Veeraiah, D. Tirupati Swamy et al  2012 Chin. Phys. Lett. 29 117102
Download: PDF(895KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electronic, structural and optical properties of the cubic perovskite CsCaF3 are calculated by using the full potential linearized augmented plane wave (FP-LAPW) plus local orbitals method with generalized gradient approximation (GGA) in the framework of the density functional theory. The calculated lattice constant is in good agreement with the experimental result. The electronic band structure shows that the fundamental band gap is wide and indirect at (ΓR) point. The contribution of the different bands is analyzed from the total and partial density of states curves. The charge density plots show strong ionic bonding in Cs-F, and ionic and weak covalent bonding between Ca and F. Calculations of the optical spectra, viz., the dielectric function, optical reflectivity, absorption coefficient, real part of optical conductivity, refractive index, extinction coefficient and electron energy loss, are performed for the energy range 0–30 eV.
Received: 13 April 2012      Published: 28 November 2012
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Ps (Other inorganic compounds)  
  78.20.-e (Optical properties of bulk materials and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/117102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/117102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. Ephraim Babu
A. Veeraiah
D. Tirupati Swamy
V. Veeraiah
[1] Ouenzerfi R El, Ono S, Quema A et al 2004 J. Appl. Phys. 96 7655
[2] Shimamura K, Sato H, Bensalah A, Sudesh V, Machida H, Sarukura N and Fukuda T 2001 Cryst. Res. Technol. 36 801
[3] Setter N et al 2006 J. Appl. Phys. 100 051606
[4] Lim S H, Rastogi A C and Desu S B 2004 J. Appl. Phys. 96 5673
[5] Verma A S and Jindal V K 2009 J. Alloys Compd. 485 514
[6] Knierim W, Honold A, Brauch U and Durr U 1986 J. Opt. Soc. Am. B 3 119
[7] Springis M, Sharakovsky A, Tale I and Rogulis U 2005 Phys. Status Solidi C 2 511
[8] Hu Y X, Wu S Y, Wang X F and Li L L 2009 Pramana 72 989
[9] Lua?a V, Costales A and Pendás A M 1997 Phys. Rev. B 55 4285
[10] Murtaza G, Maqbool M, Rahnamaye Aliabad H A and Afaq A 2011 Chin. Phys. Lett. 28 117803
[11] Chornodolskyy Y et al 2007 J. Phys. Studies 11 421
[12] Jiang L Q et al 2006 J. Phys. Chem. Solids 67 1531
[13] Weber, Marvin J. 1932 Handbook of Optical Materials
[14] Falin M L et al 2011 Appl. Magn. Reson. 40 65
[15] Akkus H and Erdinc B 2009 Phys. Status Solidi B 246 1334
[16] Feng Z et al 2008 Solid State Commun. 148 472
[17] Salehi H and Tolabinejad H 2011 Opt. Photon. J. 1 75
[18] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C et al 1992 Phys. Rev. B 46 6671
[19] Perdew J P 1991 Physica B 172 1
[20] Goudochnikov P and Bell A J 2007 J. Phys.: Condens. Matter 19 176201
[21] Li C, Wang B, Wang R, Wang H and Lu X 2008 Physica B 403 539
[22] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties ed Schwarz K (Vienna, Austria: Vienna Technological University)
[23] Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Smith N V 1971 Phys. Rev. B 3 1862
[25] Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. Commun. 175 1
[26] Fox M 2001 Optical Properties of Solids (New York: Oxford University Press)
[27] Wooten F 1972 Optical Properties of Solids (New York: Acadmic) p 179
[28] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[29] M Maqbool, B Amin and I Ahmed 2009 J. Opt. Soc. Am. B 26 2181
[30] Maqbool M, Kordesch M E and Kayani A 2009 J. Opt. Soc. Am. B 26 998
[31] Goubin F et al 2004 J. Solid State Chem. 177 89
[32] Dadsetani M and Pourghazi A 2006 Phys. Rev. B 73 195102
[33] Yi L and Duan Y F 2005 Chin. Phys. Lett. 22 435
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 117102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 117102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 117102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 117102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 117102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 117102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 117102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 117102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 117102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 117102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 117102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 117102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 117102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 117102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 117102
Viewed
Full text


Abstract