FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Graphene-Oxide-Based Q-Switched Fiber Laser with Stable Five-Wavelength Operation |
ZHAO Jun-Qing1, WANG Yong-Gang2, YAN Pei-Guang1**, RUAN Shuang-Chen1**, CHENG Jian-Qun1, DU Ge-Guo1, YU Yong-Qin1, ZHANG Ge-Lin1, WEI Hui-Feng3, LUO Jie3, Yuen H. Tsang2 |
1Shenzhen Key Laboratory of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 2Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 3State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Company Ltd. R&D Center, Wuhan 430073
|
|
Cite this article: |
ZHAO Jun-Qing, WANG Yong-Gang, YAN Pei-Guang et al 2012 Chin. Phys. Lett. 29 114206 |
|
|
Abstract We demonstrate an erbium-doped ring-cavity fiber laser Q-switched by a graphene oxide-based saturable absorber (GOSA). The GOSA was fabricated by vertically evaporating GO-polyvinylalcohol (GO/PVA) composite dispersion, and has a good performance under room temperature. Utilizing a specially fabricated fiber Bragg grating (FBG), stable five-wavelength lasing is realized and stabilized at different pump powers under any polarization state. When the pump power increases from 78.4 mW to 379.3 mW, the output power ranging from 1.9 mW to 16.6 mW could be obtained, with pulse duration from 6.8 μs to 2.72 μs, single pulse energy from 123.73 nJ to 229.74 nJ, and pulse repetition rate from 15.36 kHz to 72.25 kHz. To the best of our knowledge, it is the first simultaneous realization of five-wavelength operation and pulse output in a GO Q-switched all fiber laser system.
|
|
Received: 02 July 2012
Published: 28 November 2012
|
|
|
|
|
|
[1] Wang Y G, Chen H R, Wen X M, Hsieh W F and Tang J 2011 Nanotechnology 22 455203 [2] Sun Z P, Hasan T, Wang F Q, Rozhin A G, White I H and Ferrari C 2010 Nano Res. 3 404 [3] Popa D, Sun Z P, Hasan T, Wang F and Ferari A C 2011 Appl. Phys. Lett. 98 073106 [4] Feng X H, Tam H Y, Chung W H and Wai P K A 2006 Opt. Commun. 263 295 [5] Han Y G, Tran T V A and Lee S B 2006 Opt. Lett. 31 697 [6] Luo Z Q, Zhou M, Weng J, Huang G M, Xu H Y, Ye C C and Cai Z P 2010 Opt. Lett. 35 3709 [7] Luo Z Q, Zhou M, Wu D D, Ye C C, Weng J, Dong J, Xu H Y, Cai Z P and Chen L J 2011 IEEE J. Lightwave Technol. 29 2732 [8] Cao W J, Wang H Y, Luo A P, Luo Z C and Xu W C 2012 Laser Phys. Lett. 9 54 [9] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 [10] Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferari A C 2010 Appl. Phys. Lett. 97 203106 [11] Kim H S, Cho J Y, Jang S Y and Song Y W 2011 Appl. Phys. Lett. 98 021104 [12] Martinez A, Fuse K, Xu B and Yamashita S J 2010 Opt. Express 18 23054 [13] Chang Y M, Kim H, Lee J H, Song Y W 2010 Appl. Phys. Lett. 97 211102 [14] Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803 [15] Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Express 17 17630 [16] Zhang H, Tang D Y, Knize R J, Zhao L M, Bao Q L and Loh K P 2010 Appl. Phys. Lett. 96 111112 [17] Zhang H, Tang D Y, Zhao L M, Bao Q L, Loh K P, Lin B and Tjin S C 2010 Laser Phys. Lett. 7 591 [18] Zhang L, Wang Y G, Yu H J, Zhang S B, Hou W, Lin X C and Li J M 2011 Laser Phys. 21 2072 [19] Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B and Xu J 2012 Laser Phys. Lett. 9 15 [20] Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024 [21] He X Y, Liu Z B, Wang D N, Yang M W, Liao C R and Zhao X 2012 IEEE J. Lightwave Technol. 30 984 [22] Arkin W T 2010 Adv. Laser Opt. Research 4 224 (New York: Nova Science Publishers Inc.) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|