Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114204    DOI: 10.1088/0256-307X/29/11/114204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Performance of Post-Nonlinearity Compensation for Differential-Phase-Shifted-Keying Links with Transmitter Imperfections
YUAN Jie, XUE Tian-Ming, ZHU Guang-Hao**
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
YUAN Jie, XUE Tian-Ming, ZHU Guang-Hao 2012 Chin. Phys. Lett. 29 114204
Download: PDF(543KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the post nonlinearity compensation of differential-phase-shift-keying links employing pure soliton transmissions over a large number of spans. In addition to the distributed amplified spontaneous noises added by the inline amplifiers, lumped intensity noises initially resulting from transmitter imperfections are also considered. Based on the soliton perturbation theory, we derive simple and accurate formulae for the optimum operating phase, the variance of the residue phase noise, and the phase Q-factor improvement of the post nonlinearity compensation. We validate these derived formulae by comparing their results with numerical simulations built upon the split-step Fourier method.
Received: 13 June 2012      Published: 28 November 2012
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114204       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Jie
XUE Tian-Ming
ZHU Guang-Hao
[1] Xu C et al 2004 IEEE J. Select. Top. Quantum Electron. 10 281
[2] Gordon J P and Mollenauer L F 1990 Opt. Lett. 15 1351
[3] Mecozzi A 1994 IEEE J. Lightwave Technol. 12 1993
[4] Mecozzi A 2004 Opt. Lett. 29 673
[5] Ho K P 2003 J. Opt. Soc. Am. B 20 1875
[6] Liu X et al 2002 Opt. Lett. 27 1616
[7] Xu C and Liu X 2002 Opt. Lett. 27 1619
[8] Jiang H, Wen H, Han L Y, Guo Y L and Zhang H Y 2008 Chin. Phys. Lett. 25 1697
[9] Croussore K and Li G 2008 IEEE J. Select. Top. Quantum Electron. 14 648
[10] Stephan C, Sponsel K, Onishchukov G, Schmauss B and Leuchs G 2009 IEEE Photon. Technol. Lett. 21 1864
[11] Xu M, Zhou Z, Pu X, Ji J H and Yang S W 2011 Chin. Phys. Lett. 28 024204
[12] Frascella P, Sygletos S, Gunning F C, Weerasuriya R et al 2011 IEEE Photon. Technol. Lett. 23 516
[13] Wu W H, Huang X, Yu Y and Zhang X L 2012 Chin. Phys. Lett. 29 044205
[14] Huang X, Qin C, Yu Y, Zhang Z and Zhang X L 2012 Chin. Phys. Lett. 29 054202
[15] Schubert C, Ferber S, Kroh M, Schmidt-Langhorst C, Ludwig R, Huttl B, Kaiser R and Weber H G 2005 Proc. ECOC Glasgow UK Tu153
[16] Rana F, Lee H L T, Ram R J, Grein M E, Jiang L A, Ippen E P and Haus H A 2002 J. Opt. Soc. Am. B 19 2609
[17] Haus H A and Wong W S 1996 Rev. Mod. Phys. 68 423
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 114204
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 114204
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 114204
[4] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 114204
[5] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 114204
[6] Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng, Bo Liu, Rahat Ullah, Feng Tian. Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA[J]. Chin. Phys. Lett., 2017, 34(10): 114204
[7] Chao-Yi Li, Jun-Ming An, Jiu-Qi Wang, Liang-Liang Wang, Jia-Shun Zhang, Jian-Guang Li, Yuan-Da Wu, Yue Wang, Xiao-Jie Yin, Yong Li, Fei Zhong. The 8$\times$10GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection[J]. Chin. Phys. Lett., 2017, 34(10): 114204
[8] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 114204
[9] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Yu-De Yu. Compact Optical Add-Drop De-Multiplexers with Cascaded Micro-Ring Resonators on SOI[J]. Chin. Phys. Lett., 2017, 34(6): 114204
[10] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 114204
[11] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Rui Wang, Yu-De Yu. A Highly Compact Third-Order Silicon Elliptical Micro-Ring Add-Drop Filter with a Large Free Spectral Range[J]. Chin. Phys. Lett., 2017, 34(3): 114204
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 114204
[13] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 114204
[14] Fei Guo, Dan Lu, Rui-Kang Zhang, Hui-Tao Wang, Wei Wang, Chen Ji. Two-Mode Converters at 1.3μm Based on Multimode Interference Couplers on InP Substrates[J]. Chin. Phys. Lett., 2016, 33(02): 114204
[15] MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing, ZHANG Tian-Yong, WANG Ying. Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD[J]. Chin. Phys. Lett., 2015, 32(11): 114204
Viewed
Full text


Abstract