Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114203    DOI: 10.1088/0256-307X/29/11/114203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis of Responsivity and Signal-to-Noise Ratio in PEPT
ZHOU Quan, GUO Shu-Xu, LI Zhao-Han, SONG Jing-Yi, CHANG Yu-Chun**
1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012
Cite this article:   
ZHOU Quan, GUO Shu-Xu, LI Zhao-Han et al  2012 Chin. Phys. Lett. 29 114203
Download: PDF(675KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze the responsivity and signal-to-noise ratio (SNR) of a punchthrough enhanced phototransistor (PEPT). Measurement results show that the PEPT exhibits a good response to light over a wide range of intensity. Because the responsivity is still as high as 106 A/W when the bias voltage is as low as 0.2 V, the device is suitable for ultra-low voltage applications. Meanwhile, with 1–10 μA bias current, the PEPT shows the best performance for the responsivity and SNR. When incident light is as low as 3.8×10?8 W/cm2, the responsivity reaches approximately 108 A/W. The super high responsivity of PEPTs makes it possible to fabricate small sized photodetector.
Received: 24 July 2012      Published: 28 November 2012
PACS:  42.79.Pw (Imaging detectors and sensors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  84.60.Jt (Photoelectric conversion)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Quan
GUO Shu-Xu
LI Zhao-Han
SONG Jing-Yi
CHANG Yu-Chun
[1] Shi W H, Mao R W, Zhao L, Luo L P and Wang Q M 2006 Chin. Phys. Lett. 23 735
[2] Zhou M and Zhao D G 2007 Chin. Phys. Lett. 24 1745
[3] Peng Z H, Liu Y G, Yao L S Cao Z L, Mu Q Q, Hu L F, Lu X H, Xuan L and Zhang Z Y 2011 Chin. Phys. Lett. 28 094207
[4] Abedin M N, Refaat T F, Sulima O V and Singh U N 2004 IEEE Trans. Electron Devices 51 2013
[5] Zan H W, Kao S C and Ruei S 2010 IEEE Electron Device Lett. 31 135
[6] Wang Y, Yang E S and Wang W L 1993 J. Appl. Phys. 74 6978
[7] Sridhara R, Frimel S M, Roenker K P, Pan N and Elliott J 1998 IEEE J. Lightwave Technol. 16 1101
[8] Nascetti A and Caputo D 2002 IEEE Trans. Electron Devices 49 395
[9] Wang X, Hu W, Chen X, Xu J, Wang L, Li X and Lu W 2011 J. Phys. D: Appl. Phys. 44 405102
[10] Han D, Li G, Yan F and Zhu E J 1997 IEEE Photon. Technol. Lett. 9 1391
[11] Luo H L, Chang Y C, Wong K S and Wang Y Q 2001 Appl. Phys. Lett. 79 773
[12] Liu X, Guo S X, Du G T, Wang S and Chang Y C 2009 IEEE Electron Device Lett. 30 272
[13] Zhou Q, Guo S X, Du G T, Wang Y Q and Chang Y C 2012 IEEE Trans. Electron Devices 59 1423
Related articles from Frontiers Journals
[1] Yi-Yi Gu, Yi-Fan Wang, Jing Xia, Xiang-Min Meng. Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection[J]. Chin. Phys. Lett., 2020, 37(4): 114203
[2] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 114203
[3] Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode[J]. Chin. Phys. Lett., 2018, 35(11): 114203
[4] Tao Zhou, Rong Zhang, Chen Yao, Zhang-Long Fu, Di-Xiang Shao, Jun-Cheng Cao. Terahertz Three-Dimensional Imaging Based on Computed Tomography with Photonics-Based Noise Source[J]. Chin. Phys. Lett., 2017, 34(8): 114203
[5] YUAN Li, WU Can, ZHANG Zhao-Hua, REN Tian-Ling. A Silicon-Based Positive-Intrinsic-Negative Photodetector Double Linear Array on a Thick Intrinsic Epitaxial Layer[J]. Chin. Phys. Lett., 2014, 31(05): 114203
[6] ZHANG Yan, LI Tao, LI Qing-Ling. Detection of Foreign Bodies and Bubble Defects in Tire Radiography Images Based on Total Variation and Edge Detection[J]. Chin. Phys. Lett., 2013, 30(8): 114203
[7] ZHOU Tao, ZHANG Rong, GUO Xu-Guang, TAN Zhi-Yong, CAO Jun-Cheng. THz Imaging Using a Quantum-Well Photodetector with Background Limited Performance[J]. Chin. Phys. Lett., 2012, 29(10): 114203
[8] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 114203
[9] ZHAO An-Di,ZHENG Yong-Jun,YU Xiao-Mei**. Imaging and Characteristics of a Bimaterial Microcantilever FPA Fabricated using Bulk Silicon Processes[J]. Chin. Phys. Lett., 2012, 29(5): 114203
[10] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 114203
[11] WANG Xin-Wei, ZHOU Yan, FAN Song-Tao, HE Jun, LIU Yu-Liang. Range-Gated Laser Stroboscopic Imaging for Night Remote Surveillance[J]. Chin. Phys. Lett., 2010, 27(9): 114203
[12] CHENG Teng, ZHANG Qing-Chuan, JIAO Bin-Bin, CHEN Da-Peng, WU Xiao-Ping. Analysis of Optical Readout Sensitivity for Uncooled Infrared Detector[J]. Chin. Phys. Lett., 2009, 26(12): 114203
[13] XIONG Feng, GUO Xu-Guang, CAO Jun-Cheng. Simulation of Photocurrents of Terahertz Quantum-Well Photodetectors[J]. Chin. Phys. Lett., 2008, 25(5): 114203
[14] CHEN Yu-Ling, GUO Xu-Guang, CAO Jun-Cheng. Theoretical Study on Absorption of Magnetically Tunable Terahertz Quantum-Well Photodetectors[J]. Chin. Phys. Lett., 2006, 23(6): 114203
[15] LI Ming, WANG Ming, RONG Hua, LI Hong-Pu. A Novel Analytical Approach for Multi-Layer Diaphragm-Based Optical Microelectromechanical-System Pressure Sensors[J]. Chin. Phys. Lett., 2006, 23(5): 114203
Viewed
Full text


Abstract