Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 110701    DOI: 10.1088/0256-307X/29/11/110701
GENERAL |
High Performance Humidity Sensor Based on Electrospun Zr0.9Mg0.1O2 Nanofibers
SU Mei-Ying1,2, WANG Jing1**, YAO Peng-Jun1,3, DU Hai-Ying1,4
1School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023
2Institute of Microelectronics of Chinese Academy, Sciences, Beijing 100029
3School of Educational Technology, Shenyang Normal University, Shenyang 110034
4Department of Electromechanical Engineering & Information, Dalian Nationalities University, Dalian 116600
Cite this article:   
SU Mei-Ying, WANG Jing, YAO Peng-Jun et al  2012 Chin. Phys. Lett. 29 110701
Download: PDF(947KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Zr0.9Mg0.1O2 nanofibers and ZrO2 nanofibers are synthesized using electrospinning and the calcination technique. The nanofibers are characterized using x-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a Brunauer–Emmett–Teller (BET) surface analyzer. The humidity sensing properties of Zr0.9Mg0.1O2 nanofiber sensors are analyzed and compared with those of ZrO2 nanofiber sensors. The Zr0.9Mg0.1O2 nanofiber humidity sensors exhibit a broader humidity range of 11–97% relative humidity (RH), good linearity, small humidity hysteresis, and rapid response and recovery times. The complex impedance plots of the Zr0.9Mg0.1O2 sensor at different RHs are drawn, and the humidity sensing mechanism is discussed via an equivalent circuit.
Received: 19 April 2012      Published: 28 November 2012
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  82.47.Rs (Electrochemical sensors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/110701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/110701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Mei-Ying
WANG Jing
YAO Peng-Jun
DU Hai-Ying
[1] Cosentino I C, Muccillo E N S and Muccillo R 2007 Mater. Chem. Phys. 103 407
[2] Lin C H and Chen C H 2008 Sens. Actuat. B 129 531
[3] Hu S, Chen H, Fu G and Meng F 2008 Sens. Actuat. B 134 769
[4] Sun A, Huang L and Li Y 2009 Sens. Actuat. B 139 543
[5] Liu L, Kou L Y, Zhong Z C, Wang L Y, Liu L F and Li W 2010 Chin. Phys. Lett. 27 050701
[6] Xu L, Wang R, Xiao Q, Zhang D and Liu Y 2011 Chin. Phys. Lett. 28 070702
[7] Yue X J, Hong T S, Xu X and Li Z 2011 Chin. Phys. Lett. 28 090701
[8] Qu W and Meyer J U 1997 Meas. Sci. Technol. 8 593
[9] Leszek J G, Benedykt W L, Karol N and Helena T 1997 Meas. Sci. Technol. 8 92
[10] Zhang H, Li Z, Liu L, Wang C, Wei Y and Macdiarmid A G 2009 Talanta 79 953
[11] Liu X, Wang R, Zhang T, He Y, Tu J and Li X 2010 Sens. Actuat. B 150 442
Related articles from Frontiers Journals
[1] Shaochun Lin, Tian Tian, Peiran Yin, Pu Huang, Liang Zhang, and Jiangfeng Du. Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator[J]. Chin. Phys. Lett., 2021, 38(2): 110701
[2] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 110701
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 110701
[4] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 110701
[5] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 110701
[6] Yu-Long Cao, Fei Yang, Dan Xu, Qing Ye, Hai-Wen Cai, Zu-Jie Fang. Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer[J]. Chin. Phys. Lett., 2016, 33(05): 110701
[7] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 110701
[8] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 110701
[9] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 110701
[10] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 110701
[11] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 110701
[12] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 110701
[13] FENG Zhao-Bin, LIU Duo. Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes[J]. Chin. Phys. Lett., 2013, 30(10): 110701
[14] HUANG Wan-Xia . Fano-Resonance of a Planar Metamaterial[J]. Chin. Phys. Lett., 2013, 30(7): 110701
[15] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors[J]. Chin. Phys. Lett., 2013, 30(5): 110701
Viewed
Full text


Abstract