Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 110305    DOI: 10.1088/0256-307X/29/11/110305
GENERAL |
Cryptanalysis and Improvement of a Quantum Network System of QSS-QDC Using χ-Type Entangled States
GAO Gan1**, FANG Ming2, CHENG Mu-Tian3
1Department of Electrical Engineering, Tongling University, Tongling 244000
2Jiang Huai College of Anhui University, Hefei 230031
3School of Electrical Engineering and Information, Anhui University of Technology, Maanshan 243002
Cite this article:   
GAO Gan, FANG Ming, CHENG Mu-Tian 2012 Chin. Phys. Lett. 29 110305
Download: PDF(364KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the paper [Chin. Phys. Lett. 29 (2012) 050303] of Hong et al., two quantum secret sharing protocols were proposed. We study the security of the second protocol and find that it is insecure. Acting as the communication center, Trent may eavesdrop Alice's secret messages without introducing any error. Finally, a feasible improvement of the second protocol is given.
Received: 31 May 2012      Published: 28 November 2012
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/110305       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/110305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Gan
FANG Ming
CHENG Mu-Tian
[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Processings (Bangalore India) (New York: IEEE) P 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[5] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[6] Gao G 2008 Opt. Commun. 281 876
[7] Gao G 2010 Phys. Scr. 81 065005
[8] Zhu C H, Pei C X, Quan D X, Gao J L, Chen L and Yi Y H 2010 Chin. Phys. Lett. 27 090301
[9] Li C Y and Li Y S 2011 Chin. Phys. Lett. 28 120306
[10] Wang J, Zhang S, Zhang Q and Tang C J 2011 Chin. Phys. Lett. 28 100301
[11] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[12] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[13] Man Z X and Xia Y J 2007 Chin. Phys. Lett. 24 15
[14] Piotr Z 2012 Chin. Phys. Lett. 29 010301
[15] Hillery M, Buzk V and Berthiaume A 1999 Phys. Rev. A 59 1829
[16] Karimipour V and Bahraminasab A 2002 Phys. Rev. A 65 042320
[17] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[18] Li Y M, Zhang K S and Peng K C 2004 Phys. Lett. A 324 420
[19] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[20] Yan F L and Gao T 2005 Phys. Rev. A 72 012304
[21] Wang H F, Ji X and Zhang S 2006 Phys. Lett. A 358 11
[22] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 354 190
[23] Li X H, Zhou P, Li C Y, Zhou H Y and Deng F G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1975
[24] Liu W T, Liang L M, Li C Z and Yuan J M 2006 Chin. Phys. Lett. 23 3148
[25] Zhang Z J, Gao G, Wang X, Han L F and Shi S H 2007 Opt. Commun. 269 418
[26] Yan F L, Gao T and Li Y C 2008 Chin. Phys. Lett. 25 1187
[27] Deng F G, Li X H and Zhou H Y 2008 Phys. Lett. A 372 1957
[28] Guo Y, Huang D Z, Wen K, Zeng G H and Lee M H 2008 Chin. Phys. Lett. 25 16
[29] Gao G 2009 Commun. Theor. Phys. 52 421
[30] Zhu Z C and Zhang Y Q 2010 Chin. Phys. Lett. 27 060303
[31] Hao L, Li J L and Long G L 2010 Sci. Chin. Phys. Mech. Astron. 53 491
[32] Shi R H, Huang L S, Yang W and Zhong H 2011 Chin. Phys. Lett. 28 050303
[33] Hong C H, Heo J O, Lim J and Yang H 2012 Chin. Phys. Lett. 29 050303
[34] Du M K, He B and Wang Y 2011 Chin. Phys. Lett. 28 010503
[35] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[36] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[37] Wang W Y, Wang C, Wen K and Long G L 2007 Chin. Phys. Lett. 24 1463
[38] Wen X J, Liu Y and Zhou N R 2007 Opt. Commun. 275 278
[39] Guo Y, Shi R and Zeng G 2010 Phys. Scr. 81 045006
[40] Hong C H, Heo J O, Khym G L, Lim J, Hong S K and Yang H J 2010 Opt. Commun. 283 2644
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 110305
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 110305
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 110305
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 110305
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 110305
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 110305
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 110305
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 110305
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 110305
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 110305
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 110305
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 110305
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 110305
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 110305
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 110305
Viewed
Full text


Abstract