Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 110304    DOI: 10.1088/0256-307X/29/11/110304
GENERAL |
Pseudo-Harmonic Oscillatory Ring-Shaped Potential in a Relativistic Equation
M. Eshghi**
1Department of Physics, Faculty of Sciences, Imam Hossein Comprehensive University, Tehran, Iran
Cite this article:   
M. Eshghi 2012 Chin. Phys. Lett. 29 110304
Download: PDF(412KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Exact solutions of the Dirac equation are studied for the pseudo-harmonic oscillatory ring-shaped potential by using the Laplace transform approach and the Nikiforov–Uvarov (NU) method. The normalized eigenfunctions are expressed in terms of hyper-geometric series and use the NU and Laplace methods to obtain the eigenvalues equations. The obtained result of the eigenvalue equation is compared. At the end, one can find with a simple transformation the lower spinor component of the Dirac equation.
Received: 29 June 2012      Published: 28 November 2012
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/110304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/110304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Eshghi
[1] Salamin, Y I, Hu S, Hatsagortsyan K Z and Keitel C H 2006 Phys. Rep. 427 41
[2] Kim S H 2009 Chin. Phys. Lett. 26 011201
[3] Kim S H 2009 Chin. Phys. Lett. 26 054101
[4] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[5] Wang I C and Wong C Y 1988 Phys. Rev. D 38 348
[6] Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. 325 2522
[7] Eshghi M and Hamzavi M 2012 Commun. Theor. Phys. 57 355
[8] Eshghi M and Mehraban H 2012 Few-Body Syst. 52 41
[9] Eshghi M 2011 Int. J. Sci. Adv. Tech. 1(10) 11
[10] Hamzavi M, Eshghi M and Ikhdair S M 2012 J. Math. Phys. 53 082101
[11] Eshghi M and Mehraban H 2012 Chin. J. Phys. 50 533
[12] Zhang X A, Chen K and Duan Z L 2005 Chin. Phys. 14 42
[13] Zhang M C and Huang-Fu G Q 2012 Ann. Phys. 327 841
[14] Cheng Y F and Dai T Q 2007 Chin. J. Phys. 45 480
[15] Hu X Q, Luo G, Wu Z M and Niu L B 2010 Commun. Theor. Phys. 53 242
[16] Akcay H 2009 Phys. Lett. A 373 616
[17] Aydo?du O and Sever R 2010 Ann. Phys. 325 373
[18] Hamzavi M and Amirfakhrian M 2011 Int. J. Phys. Sci. 6 3807
[19] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[20] Chen G 2005 Chin. Phys. 14 1075
[21] Doetsch G 1961 Guide to the Applications of Laplace Transforms (Princeton: Princeton University Press)
[22] Chen G 2004 Phys. Lett. A 326 55
[23] Arda A and Sever R 2012 J. Math. Chem. 50 971
[24] Schr?dinger E 1926 Ann. Phys. 79 361
[25] Swainson R A and Drake G W F 1991 J. Phys. A: Math. Gen. 24 79
[26] Chen G 2005 Chin. Phys. 14 1075
[27] Lisboa R, Malheiro M, De Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319
[28] Akcay H 2009 Phys. Lett. A 373 616
[29] Spiegel M R 1965 Schaum's Outline of Theory and Problems of Laplace Transforms (New York: Schaum Publishing)
[30] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (New York: Dover)
[31] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Verlag Basel: Birkhauser)
[32] Aydougdu O and Sever R 2009 Phys. Scr. 80 015001
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 110304
[2] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 110304
[3] Jian-Hui Yuan, Ni Chen, Hua Mo, Yan Zhang, Zhi-Hai Zhang. Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction[J]. Chin. Phys. Lett., 2016, 33(03): 110304
[4] Ciprian Dariescu, Marina-Aura Dariescu. The $SO(3,1)$-Gauge Invariant Approach to Fermions on Rindler Spacetime[J]. Chin. Phys. Lett., 2016, 33(02): 110304
[5] A. N. Ikot, H. P. Obong, H. Hassanabadi. Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space[J]. Chin. Phys. Lett., 2015, 32(03): 110304
[6] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 110304
[7] REN Na, WANG Jia-Xiang, LI An-Kang, WANG Ping-Xiao. Pair Production in an Intense Laser Pulse: The Effect of Pulse Length[J]. Chin. Phys. Lett., 2012, 29(7): 110304
[8] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 110304
[9] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 110304
[10] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 110304
[11] FENG Jun-Sheng**, LIU Zheng, GUO Jian-You . Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis[J]. Chin. Phys. Lett., 2010, 27(11): 110304
[12] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 110304
[13] S. H. Kim. Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission[J]. Chin. Phys. Lett., 2009, 26(5): 110304
[14] S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser[J]. Chin. Phys. Lett., 2009, 26(1): 110304
[15] M. R. Setare, O. Hatami. Exact Solutions of the Dirac Equation for an Electron in a Magnetic Field with Shape Invariant Method[J]. Chin. Phys. Lett., 2008, 25(11): 110304
Viewed
Full text


Abstract