Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 110201    DOI: 10.1088/0256-307X/29/11/110201
GENERAL |
Solution of Multimaterial Equilibrium Radiation Diffusion Problems by using the Discontinuous Galerkin Method
ZHANG Rong-Pei1**, YU Xi-Jun2, ZHU Jiang3
1School of Sciences, Liaoning Shihua University, Fushun 113001
2Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088
3Laboratório Nacional de Computa??o Científica, MCTI, Avenida Getúlio Vargas 333, 25651-075 Petrópolis, RJ, Brazil
Cite this article:   
ZHANG Rong-Pei, YU Xi-Jun, ZHU Jiang 2012 Chin. Phys. Lett. 29 110201
Download: PDF(1541KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The discontinuous Galerkin method is used for solving the two-dimensional equilibrium radiation diffusion equation. We construct the weighted interior penalty method based on the geometric average weight. The semi-implicit integration factor method is applied to the nonlinear ordinary differential equations obtained by the discontinuous Galerkin spatial discretization. Numerical results are presented to demonstrate the validity and reliability of using the discontinuous Galerkin method for solving the highly nonlinear radiation diffusion equation.
Received: 07 June 2012      Published: 28 November 2012
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  44.40.+a (Thermal radiation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/110201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/110201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Rong-Pei
YU Xi-Jun
ZHU Jiang
[1] Mousseau V A, Knoll D A and Rider W J 2000 J. Comput. Phys. 160 743
[2] Pomraning G C 1973 The Equations of Radiation Hydrodynamics (New York: Pergamon)
[3] Li G, Deng L, Li S and Mo Z Y 2011 Acta Phys. Sin. 60 022401 (in Chinese)
[4] Rider W, Knoll D A and Olson G L 1999 J. Comput. Phys. 152 164
[5] Stals L 2003 Electron. Trans. Numer. Anal. 15 78
[6] Ovtchinnikov S and Cai X C 2004 Numer. Lin. Alg. Appl. 11 867
[7] Pernice M and Philip B 2006 SIAM J. Sci. Comput. 27 170
[8] Cockburn B and Shu C W 2001 J. Sci. Comput. 160 173
[9] Gassner G, L?rcher F and Munz C A 2007 J. Comput. Phys. 224 1049
[10] Zhang R P, Yu X J and Feng T 2012 Chin. Phys. B 21 030202
[11] Ober C C and Shadid J N 2004 J. Comput. Phys. 195 743
[12] Knoll D A, Chacón L, Margolin L G and Mousseau V A 2003 J. Comput. Phys. 185 583
[13] Chen S and Zhang Y 2011 J. Comput. Phys. 230 4336
Related articles from Frontiers Journals
[1] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 110201
[2] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 110201
[3] CUI Zhi-Wei, HAN Yi-Ping, CHEN An-Tao. Electromagnetic Scattering of a High-Order Bessel Trigonometric Beam by Typical Particles[J]. Chin. Phys. Lett., 2015, 32(09): 110201
[4] CUI Zhi-Wei, HAN Yi-Ping, YU Mei-Ping. Numerical Investigation on Scattering of an Arbitrarily Incident Bessel Beam by Fractal Soot Aggregates[J]. Chin. Phys. Lett., 2014, 31(06): 110201
[5] CAI Wen-Jun, WANG Yu-Shun, SONG Yong-Zhong. Numerical Simulation of Rogue Waves by the Local Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2014, 31(04): 110201
[6] SHI Yu-Ren, WANG Guang-Hui, LIU Cong-Bo, ZHOU Zhi-Gang, YANG Hong-Juan. Analytical Solutions to the Time-Independent Gross-Pitaevskii Equation with a Harmonic Trap[J]. Chin. Phys. Lett., 2012, 29(11): 110201
[7] LI Zhi-Ming, HAO Yue, ZHANG Jin-Cheng, CHEN Chi, CHANG Yong-Ming, XU Sheng-Rui, BI Zhi-Wei. Optimization and Finite Element Analysis of the Temperature Field in a Nitride MOCVD Reactor by Induction Heating[J]. Chin. Phys. Lett., 2010, 27(7): 110201
[8] LV Wei-Guo, CHU Zhao-Tan, ZHAO Xiao-Qing, FAN Yu-Xiu, SONG Ruo-Long, HAN Wei. Simulation of Electromagnetic Wave Logging Response in Deviated Wells Based on Vector Finite Element Method[J]. Chin. Phys. Lett., 2009, 26(1): 110201
[9] LUO Ji-Feng, HAN Yong-Hao, TANG Ben-Chen, GAO Chun-Xiao, LI Min, ZOU Guang-Tianv. Effects of Temperature and Pressure on a Novel 1,3,4-Oxadiazole Derivative[J]. Chin. Phys. Lett., 2005, 22(4): 110201
[10] LIU Yong-Cai, CHEN Wan-Chun, GE Pei-Wen, HUO Chong-Ru. Computational Analysis of the Vertical Bridgman Growth of Te Doped GaSb Under Microgravity[J]. Chin. Phys. Lett., 2000, 17(10): 110201
Viewed
Full text


Abstract