FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Synthetic Turbulence Constructed by Self-Learning Fractal Interpolation |
WANG Yan-Zhi1, ZHANG Zhi-Xiong2**, SHI Yi-Peng1, SHE Zhen-Su1 |
1State Key Laboratory of Turbulence and Complex Systems and College of Engineering, Peking University, Beijing 100871 2Beijing Aeronautical Science and Technology Research Institute of COMAC Future Science & Technology Park, Changping District, Beijing 102211
|
|
Cite this article: |
WANG Yan-Zhi, ZHANG Zhi-Xiong, SHI Yi-Peng et al 2012 Chin. Phys. Lett. 29 104705 |
|
|
Abstract A self-learning fractal interpolation algorithm to construct synthetic fields with statistical properties close to real turbulence is proposed. Different from our previous work [Phys. Rev. E 84 (2011) 026328, 82 (2010) 036311], the position mapping and stretching factors between the adjacent large and small scales are learned from the initial information. Using this method, a turbulence-like field with K41 spectra and without dissipation is constructed well through a coarse grid velocity signal from one experiment's data. After filtering the interpolated signal appropriately, the probability distribution of velocity, velocity structure functions and the anomalous scaling law of the synthetic field are close to those of the original signal.
|
|
Received: 28 May 2012
Published: 01 October 2012
|
|
PACS: |
47.27.E-
|
(Turbulence simulation and modeling)
|
|
02.50.Ey
|
(Stochastic processes)
|
|
47.53.+n
|
(Fractals in fluid dynamics)
|
|
|
|
|
[1] Feder J 1988 Fractals (New York: Plenum Press) [2] Frisch U 1995 Turbulence, The Legacy of A. N. Kolmogorov (Cambridge: Cambridge University Press) [3] Benzi R, Biferale L, Crisanti A, Paladin G, Vergassola M and Vulpiani A 1993 Physica D 65 352 [4] Constantin P, Procaccia I and Sreenivasan K R 1991 Phys. Rev. Lett. 67 1739 [5] Scotti A and Meneveau C 1997 Phys. Rev. Lett. 78 867 [6] Scotti A and Meneveau C 1999 Physica D 127 198 [7] Basu S, Foufoula Georgiou E and Port'e-Agel F 2004 Phys. Rev. E 70 026310 [8] Hurst D and Vassilicos J C 2007 Phys. Fluids 19 035103 [9] Zhang Z X, Ding K Q, Shi Y P and She Z S 2011 Phys. Rev. E 84 026328 [10] Ding K Q, Zhang Z X, Shi Y P and She Z S 2010 Phys. Rev. E 82 036311 [11] Hutchinson J E 1981 Indiana Univ. Math. J. 30 (5) 713 [12] Taylor G I 1938 Proc. R. Soc. London A 164 476 [13] Kolmogorov A N 1941 Dokl. Akad. Nauk SSSR 32 16 [14] Aprovitola A and Denaro F M 2004 J. Comput. Phys. 194 329 [15] Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F and Succi S 1993 Phys. Rev. E 48 R29 [16] She Z S and Leveque E 1994 Phys. Rev. Lett. 72 336 [17] Frisch U and Orszag S A 1990 Phys. Today 43 24 [18] Meneveau C and Katz J 2000 Annu. Rev. Fluid Mech. 32 1 [19] She Z S and Zhang Z X 2009 Acta Mech. Sin. 25 279 [20] Zhang X Q, Wang G R and Chen S G 2009 Chin. Phys. B 18 5117 [21] Liu Z C 2009 Chin. Phys. B 18 636 [22] Yang W and Zhou K 2012 Chin. Phys. Lett. 29 064702 [23] Guo L and Cai X 2009 Chin. Phys. Lett. 26 088901 [24] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chin. Phys. Lett. 27 024705 [25] Dong X J, Hu Y F, Wu Y Y, Zhao J and Wan Z Z 2010 Chin. Phys. Lett. 27 044401 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|