FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Comparative Study of the Large Eddy Simulations with the Lattice Boltzmann Method Using the Wall-Adapting Local Eddy-Viscosity and Vreman Subgrid Scale Models |
LIU Ming1, CHEN Xiao-Peng1**, Kannan N. Premnath2 |
1School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072 2Department of Mechanical Engineering, University of Colorado Denver, Denver 80217-3364, USA
|
|
Cite this article: |
LIU Ming, CHEN Xiao-Peng, Kannan N. Premnath 2012 Chin. Phys. Lett. 29 104706 |
|
|
Abstract The wall-adapting local eddy-viscosity (WALE) and Vreman subgrid scale models for large eddy simulations are compared within the framework of a generalised lattice Boltzmann method. Fully developed turbulent flows near a flat wall are simulated with the two models for the shear (or friction) Reynolds number of 183.6. Compared to the direct numerical simulation (DNS), damped eddy viscosity in the vicinity of the wall and a correct velocity profile in the transitional region are achieved by both the models without dynamic procedures. The turbulent statistics, including, e.g., root-mean-square velocity fluctuations, also agree well with the DNS results. The comparison also shows that the WALE model predicts excellent damped eddy viscosity near the wall.
|
|
Received: 24 April 2012
Published: 01 October 2012
|
|
|
|
|
|
[1] Chen S Y and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329 [2] Frisch U, d'Hummieres D, Hasslacher B, Lallemand P, Pomeau Y and Rivet J P 1987 Complex Syst. 1 649 [3] Junk M, Klar A and Luo L S 2005 J. Comput. Phys. 210 676 [4] Hou S, Sterling J D, Chen S and Doolen G D 1996 Fields Inst. Commun. 6 151 [5] Krafczyk M, T?lke J and Luo L S 2003 Int. J. Mod. Phys. B 17 33 [6] d'Humieres D 1992 Prog. Astron. Aero. 159 450 [7] Lallemand P and Luo L S 2000 Phys. Rev. E 61 6546 [8] d'Humieres D 2002 Philos. Trans. R. Soc. A 360 437 [9] Chai Z H, Shi B C and Zheng L 2006 Chin. Phys. 15 1855 [10] Germano M, Piomelli U, Moin P and Cabot W H 1991 Phys. Fluids 3 1761 [11] Lilly D K 1992 Phys. Fluids 4 633 [12] Premnath K N, Pattison M J and Banerjee S 2009 Phys. Rev. E 79 026703 [13] Premnath K N, PattisonM J and Banerjee S 2009 Physica A 388 2640 [14] Jafari S and Rahnama M 2011 Int. J. Numer. Methods Fluids 67 700 [15] Nicoud F and Ducros F 1999 Flow. Turb. Combust. 62 183 [16] Vreman A W 2004 Phys. Fluids 16 3670 [17] Weickert M, Teike G, Schmidt O and Sommerfeld M 2010 Comput. Math. Appl. 59 2200 [18] Premnath K N and Abraham J 2007 J. Comput. Phys. 224 539 [19] He X, Shan X and Doolen G D 1998 Phys. Rev. E 57 R13 [20] Lam K 1989 PhD Thesis (University of California, Santa Barbara, CA) [21] Moin P and Mahesh K 1998 Annu. Rev. Fluid Mech. 30 539 [22] Pop S 2000 Turb. Flow (New York: Cambridge University Press) [23] Mei R, Luo L S, Lallemand P and d'Humieres D 2006 Comput. Fluids 35 855 [24] Kim J, Moin P and Moser R J 1987 J. Fluid Mech. 177 133 [25] Kreplin H and Eckelmann H 1979 Phys. Fluids 22 1233 [26] You D and Moin P 2007 Phys. Fluids 19 065110 [27] Nicoud F, Toda H B, Cabrit O, Bose S and Lee J 2011 Phys. Fluids 23 085106 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|