CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors |
LI Shao-Juan1,3, HE Xin1, HAN De-Dong1, SUN Lei1, WANG Yi1, HAN Ru-Qi1 , CHAN Man-Sun2, ZHANG Sheng-Dong1,3** |
1Institute of Microelectronics, Peking University, Beijing 100871
2Hong Kong University of Science and Technology, Hong Kong
3Shenzhen Graduate School, Peking University, Shenzhen 518055
|
|
Cite this article: |
LI Shao-Juan, HE Xin, HAN De-Dong et al 2012 Chin. Phys. Lett. 29 018501 |
|
|
Abstract The structural and electrical properties of ZnO films deposited by reactive radiofrequency sputtering with a metallic zinc target are systematically investigated. While the as-deposited ZnO film is in a poly-crystalline structure when the partial pressure of oxygen (pO2) is low, the grain size abruptly decreases to a few nanometers as pO2 increases to a critical value, and then becomes almost unchanged with a further increase in pO2. In addition, the resistivity of the ZnO films shows a non−monotonic dependence on pO2, including an abrupt transition of about seven orders of magnitude at the critical pO2. Thin−film transistors (TFTs) with the nanocrystalline ZnO films as channel layers have an on/off current ratio of more than 107, an off−current in the order of pA, a threshold voltage of about 4.5 V, and a carrier mobility of about 2 cm2/(V⋅s). The results show that radiofrequency sputtered ZnO with a zinc target is a promising candidate for high-performance ZnO TFTs.
|
Keywords:
85.30.Tv
73.61.Ga
81.15.Cd
|
|
Received: 27 September 2011
Published: 07 February 2012
|
|
|
|
|
|
[1] Park S H K, Hwang C H, Ryu M, Yang S, Byun C, Shin J, Lee J I, Lee K, Oh M S and Im S 2009 Adv. Mater. 21 678
[2] Cheng H C, Yang P Y, Wang J L, Agarwal S, Tsai W C, Wang S J and Lee I C 2011 IEEE Electron. Device Lett. 32 497
[3] Xu J P, Shi S B, Li L, Zhang X S, Wang Y X and Chen X M 2010 Chin. Phys. Lett. 27 047803
[4] Zhong Z, Sun L J, Chen X Q, Wu X P and Fu Z X 2010 Chin. Phys. Lett. 27 096101
[5] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[6] Zhao W, Dong X, Zhao L, Shi Z F, Wang J, Wang H, Xia X C, Chang Y C, Zhang B L and Du G T 2010 Chin. Phys. Lett. 27 128504
[7] Yi M D, Xie L H, Liu Y Y, Dai Y F and Huang J Y 2011 Chin. Phys. Lett. 28 017302
[8] Mourey D A, Zhao D A and Jackson T N 2011 IEEE Electron. Device Lett. 31 326
[9] Carcia P F, McLean R S, Reilly M H and Nunes G, J 2003 Appl. Phys. Lett. 82 1117
[10] Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305
[11] Iwasaki T, Itagaki N, Den T, Kumomi H, Nomura K, Kamiya T and Hosono H 2007 Appl. Phys. Lett. 90 242114
[12] Ellmer K 2000 J. Phys. D 33 R17
[13] Minami T 2000 Mater. Res. Bull 25 38
[14] Hwang B, Park K, Chun H S, An C H, Kim H and Lee H J 2008 Appl. Phys. Lett. 93 222104
[15] Oh B Y, Jeong M C, Ham M H and Myoung J M 2007 Semicond. Sci. Technol. 22 608
[16] Cross R B M, Souza M M D, Deane S C and Young N D 2008 IEEE Trans. Electron. Devices 55 1109 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|