Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 010202    DOI: 10.1088/0256-307X/29/1/010202
GENERAL |
Note on the Lax Pair of a Coupled Hybrid System
LIU Ping1**, FU Pei-Kai2
1Department of Electronic Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402
2Academic Affairs Division, Zhongshan Polytechnic, Zhongshan 528404
Cite this article:   
LIU Ping, FU Pei-Kai 2012 Chin. Phys. Lett. 29 010202
Download: PDF(395KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hybrid lattice, known as a discrete Korteweg-de Vries (KdV) equation, is found to be a discrete modified Korteweg-de Vries (mKdV) equation. The coupled hybrid lattice, which is pointed out to be a discrete coupled KdV system, is also found to be a discrete form of a coupled mKdV system. New lax pairs for the single and coupled discrete hybrid systems are proposed as a different study from previous ones.
Keywords: 02.30.Ik      47.35.Fg      02.30.Jr     
Received: 20 February 2011      Published: 07 February 2012
PACS:  02.30.Ik (Integrable systems)  
  47.35.Fg (Solitary waves)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/010202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/010202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ping
FU Pei-Kai
[1] Jia M, Liu P, and Lou S Y 2008 J. Math. Phys. 49 072901
[2] Wadati M 1976 Suppl. Prog. Theor. Phys. 59 36
[3] Liu P and Lou S Y 2010 Chin. Phys. Lett. 27 020202
[4] Liu P and Lou S Y 2008 Chin. Phys. Lett. 25 3311
[5] Zhao H Q, Zhu Z N and Zhang J L 2011 Chin. Phys. Lett. 28 050202
[6] Hu H C, Tong B and Lou S Y 2006 Phys. Lett. A 351 403
[7] Ablowtiz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 010202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 010202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 010202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 010202
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 010202
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 010202
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 010202
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 010202
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 010202
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 010202
[11] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 010202
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 010202
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 010202
[14] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010202
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010202
Viewed
Full text


Abstract