GENERAL |
|
|
|
|
Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model |
LI Xian-Feng1**, Andrew Y. -T. Leung2, CHU Yan-Dong1 |
1Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070
2Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong |
|
Cite this article: |
LI Xian-Feng, Andrew Y. -T. Leung, CHU Yan-Dong 2012 Chin. Phys. Lett. 29 010201 |
|
|
Abstract Hierarchical structural symmetry of periodic islands embedded in the chaotic region of modified optical injection semiconductor lasers (MOISLs) is expounded upon in phase diagrams. The onset of the bifurcation cascade shows remarkable accumulation horizons. Each cascade follows a specific period-adding route. Self-similarities and infinite spiral nestings shrinking beyond a certain point of the periodic hub are revealed to affirm the existence of self-organized distribution of periodicity and chaos in phase diagrams.
|
Keywords:
02.30.Hq
05.45.Pq
05.45.Ac
|
|
Received: 10 September 2011
Published: 07 February 2012
|
|
PACS: |
02.30.Hq
|
(Ordinary differential equations)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Ac
|
(Low-dimensional chaos)
|
|
|
|
|
[1] Wieczorek S, Krauskopf B, Simpson T and Lenstra D 2005 Phys. Rep. 416 1 [2] Bonatto C and Gallas J A C 2008 Phil. Trans. R. Soc. A 366 505 [3] Bonatto C and Gallas J A C 2007 Phys. Rev. E 75 055204 [4] Kovanis V et al 2010 Eur. Phys. J. D 58 181 [5] Freire J G and Gallas J A C 2010 Phys. Rev. E 82 037202 [6] Gallas J A C 2010 Int. J. Bifur. Chaos 20 197 [7] Chlouverakis K E and Adams M J 2003 Opt. Commun. 216 405 [8] Chlouverakis K E 2005 Int. J. Bifur. Chaos 15 3011 [9] Atsushi U 2012 Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization (Berlin: Wiley VCH) [10] Chlouverakis K E and Sprott J C 2005 Physica D 200 156 [11] Chu Y D, Li X F, Zhang J G and Chang Y X 2007 J. Zhejiang Univ. Sci. A 8 1408 [12] Chu Y D, Li X F, Zhang J G and Chang Y X 2009 Chaos Solitons Fractals 41 14 [13] An X L, Yu J N, Chu Y D, Zhang J G and Zhang L 2009 Chaos Solitons Fractals 42 865 [14] Udwadia F E and Bremen H 2001 Appl. Math. Comput. 121 219 [15] Li X F, Leung A C S, Han X P, Liu X J and Chu Y D 2011 Nonlinear Dyn. 63 263 [16] Hénon M 1982 Physica D 50 412 [17] Sprott J C 2007 Chaos 17 031124-1 [18] Sprott J C 2003 Chaos and Time Series Analysis (Oxford: Oxford University) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|