Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090505    DOI: 10.1088/0256-307X/28/9/090505
GENERAL |
Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise
ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang**
College of Mathematics, Sichuan University, Chengdu 610065
Cite this article:   
ZHANG Lu, ZHONG Su-Chuan, PENG Hao et al  2011 Chin. Phys. Lett. 28 090505
Download: PDF(478KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate stochastic resonance in a linear system subjected to multiplicative noise that is a polynomial function of colored noise. Using the stochastic averaging method, the analytical expression of the output signal-to-noise ratio (SNR) is derived. Theoretical analysis and numerical results show that the output SNR is a non-monotonic function of both the noise intensity and the correlation rate. Moreover, the phenomoenon of stochastic multi-resonance (SMR) is found, which is not observed in conventional linear systems driven by multiplicative noise with only a linear term.
Keywords: 05.40.-a      05.60.Cd      05.70.Ln     
Received: 14 June 2011      Published: 30 August 2011
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.60.Cd (Classical transport)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090505       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Lu
ZHONG Su-Chuan
PENG Hao
LUO Mao-Kang
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math Gen. 14 L453
[2] Zhang L Y et al 2003 Chin. Phys. Lett. 20 25
[3] Gitterman M 2003 Phys. Rev. E 67 057103
[4] Guo F, Zhou Y R, Jiang S Q and Gu T X 2006 J. Phys. A: Math. Gen. 39 13861
[5] Ya J, Si N Y and Jia R L 2000 Phys. Rev. E 62 1869
[6] Gitterman M 2005 Physica A 352 309
[7] Berdichevsky V and Gitterman M 1999 Phys. Rev. E 60 1494
[8] Jing H L and Yin X H 2006 Phys. Rev. E 74 051115
[9] Li D S, Li J H 2010 Commun. Theor. Phys. 53 298
[10] Gitterman M 2004 Phys. Rev. E 69 041101
[11] Katrin L, Romi M and Astrid R 2009 Phys. Rev. E 79 051128
[12] Vilar J M G and Rubi J M 1997 Phys. Rev. Lett. 78 2882
[13] Zhang J Q and Xin H W 2001 Chin. Phys. Lett. 18 870
[14] Wang J, Cao L and Wu D J 2003 Chin. Phys. Lett. 20 1217
[15] Torres J J et al 2011 New J. Phys. 13 053014
[16] Bao Q A and Liang G L 2007 J. Stat. Mech. P02019
[17] Sargent M et al 1974 Laser Physics (Reading, MA: Addison-Wesley)
[18] Stephen A M 2003 Nonlinear Microwave and RF Circuits (Norwood, MA: Artech House)
[19] Zhang L Y, Cao L and Wu D J 2008 Commun. Theor. Phys. 49 1310
[20] Ning L J, Xu W and Yao M L 2007 Chin. Phys. B 16 2595
[21] Shapiro V E and Loginov V M 1978 Physica A 91 563
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 090505
[2] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 090505
[3] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 090505
[4] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 090505
[5] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 090505
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 090505
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 090505
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 090505
[9] LIU Jian, FAN Jian-Fen**. Relationship between the Permeation-Diffusion Parameters of a Single-File Channel[J]. Chin. Phys. Lett., 2012, 29(1): 090505
[10] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 090505
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 090505
[12] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 090505
[13] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 090505
[14] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 090505
[15] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 090505
Viewed
Full text


Abstract