Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090504    DOI: 10.1088/0256-307X/28/9/090504
GENERAL |
Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential
WANG Can-Jun**
Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721007
Cite this article:   
WANG Can-Jun 2011 Chin. Phys. Lett. 28 090504
Download: PDF(593KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The phenomenon of vibrational resonance (VR) in an overdamped system with a sextic double-well potential under the excitation of two different periodic signals is investigated. The approximate analytical expression of the resonance amplitude Q at the low−frequency ω is obtained. The VR is observed, and the values of B (the amplitude of the high−frequency signal) and Ω (the frequency of the high−frequency signal) at which VR occurs are determined. Moreover, the relationship between B and Ω is revealed. The theoretical predictions are found to be in good agreement with the numerical results.
Keywords: 05.45.-a      05.90.+m     
Received: 17 February 2011      Published: 30 August 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090504       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Can-Jun
[1] Landa P and McClintock P J. Phys. A 2000 33 L433
[2] Gitterman M J. Phys. A 2001 34 L355
[3] Blekhman I I and Landa P S 2004 Int. J. Non-Linear Mech. 39 421
[4] Yao C G and Zhan M 2010 Phys. Rev. E 81 061129
[5] Jeyakumari S, Chinnathambi V, Rajasekar S and Sanjuan M A F 2009 Phys. Rev. E 80 046608
[6] Jeyakumari S, Chinnathambi V, Rajasekar S and Sanjuan M A F 2009 Chaos 19 043128
[7] Lin M and Huang Y M 2007 Acta Phys. Sin. 56 6173 (in Chinese)
[8] Yang J H and Liu X B 2010 J. Phys. A: Math. Theor. 43 122001
[9] Yang J H and Liu X B 2010 Phys. Scr. 82 025006
[10] Baltanas J P, Lopez L, Blechman I I, Landa P S, Zaikin A, Kurths J and Sanjuan M A F 2003 Phys. Rev. E 67 066119
[11] Chizhevsky V N, Smeu E and Giacomelli G 2003 Phys. Rev. Lett. 91 220602
[12] Zaikin A A, Lopez L, Baltanas J P, Kurths J and Sanjuan M A F 2002 Phys. Rev. E 66 011106
[13] Casado-Pascual J and Baltanas J P 2004 Phys. Rev. E 69 046108
[14] Su D, Chiu M and Chen C 1996 Precis. Eng. 18 161
[15] Maksimov A 1997 Ultrasonics 35 79
[16] Victor J and Conte M 2000 Visual Neurosci. 17 959
[17] Gherm V et al 1997 J. Atmos. Sol. Terr. Phys. 59 1831
[18] Deng B, Wang J and Wei X L 2009 Chaos 19 013117
[19] Deng B, Wang J and Wei X L, Tsang K M and Chan W L 2010 Chaos 20 013113
[20] Shi J C, Huang C S, Dong T and Zhang X Z 2010 Phys. Biol. 7 036006
[21] Blechman I I 2000 Vibrational Mechanics (Singapore: New World Scientic)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[8] GE Hong-Xia,YU Jian,LO Siu-Ming**. A Control Method for Congested Traffic in the Car-Following Model[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 090504
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 090504
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 090504
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 090504
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 090504
Viewed
Full text


Abstract