Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 086601    DOI: 10.1088/0256-307X/28/8/086601
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Stability of TiO2 and Al2O3 Nanofluids
WANG Xian-Ju1, LI Hai1, LI Xin-Fang2, WANG Zhou-Fei1**, LIN Fang1
1College of Science, South China Agriculture University, Guangzhou 510642
2 Department of Packaging and Printing, Zhongshan Torch Vocation and Technology College, Zhongshan 528436
Cite this article:   
WANG Xian-Ju, LI Hai, LI Xin-Fang et al  2011 Chin. Phys. Lett. 28 086601
Download: PDF(861KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Aiming at the dispersion stability of nanofluids, we investigate the absorbency and the zeta potential of TiO2 and Al2O3 nanofluids under different pH values and different dispersant concentrations. The results show that in the mass fraction 0.05% alumina and 0.01% titanium dioxide nanosuspensions, the absolute value of the zeta potential and the absorbency of the two nanofluids with sodium dodecyl sulfate (SDS) dispersant are the highest at an optimal pH (pHAl2O3≈6.0, pHTiO2≈9.5) and that there is a good correlation between absorbency and zeta potential: the higher the absolute value of the zeta potential is, the greater the absorbency is, and the better the stability of the system is. The optimizing concentrations for SDS are 0.10% and 0.14%, respectively, at which the two nanofluids have the best dispersion results. The calculated DLVO interparticle interaction potentials verify the experimental results of the pH effect on the stability behavior.
Keywords: 66.20.Ej      82.70.Kj      47.27.Em     
Received: 22 November 2010      Published: 28 July 2011
PACS:  66.20.Ej (Studies of viscosity and rheological properties of specific liquids)  
  82.70.Kj (Emulsions and suspensions)  
  47.27.em (Eddy-viscosity closures; Reynolds stress modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/086601       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/086601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xian-Ju
LI Hai
LI Xin-Fang
WANG Zhou-Fei
LIN Fang
[1] Eastman J A, Phillpot S R, Choi S U S and Keblinski P 2004 Annu. Rev. Mater. Res. 34 219
[2] Assael M J, Metaxs I N, Kakosimos K and Constantinou D 2006 Int. J. Thermophys. 27 999
[3] Jana S, Khojin A S and Zhong W H 2007 Thermochim. Acta 462 45
[4] Choi S U S, Zhang Z G and Yu W 2001 Appl. Phys. Lett. 79 2252
[5] Philip J, Shima P D and Raj B 2007 Appl. Phys. Lett. 91 203108
[6] Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T and Das S K 2004 Phys. Rev. Lett. 93 144301
[7] Lee D, Kim J W and Kim B G 2006 J. Phys. Chem. B 110 9 4323
[8] Keblinski P and Thomin J 2006 Phys. Rev. E 73 010502
[9] Li X F, Zhu D S and Wang X J 2007 J. Colloid Interface Sci. 310 456
[10] Karimian H, Babaluo A A, 2007 J. Eur. Ceram. Soc. 27 19
[11] Illés E and Tombácz E 2006 J. Colloid Interface Sci. 295 115
[12] Li J P, Guo K H, Liang D Q and Wang R Z 2004 Int. J. Refrig. 27 932
[13] Jódar-Reyes A B, Martín-Rodríguez A and Ortega-Vinuesa J L 2006 J. Colloid Interface Sci. 298 248
[14] Wang X J, Zhu D S and Yang S 2009 Chem. Phys. Lett. 470 107
Related articles from Frontiers Journals
[1] WANG Xiao-Hong**, ZHOU Quan . Renormalization Group Analysis of Weakly Rotating Turbulent Flows[J]. Chin. Phys. Lett., 2011, 28(12): 086601
[2] M. Todica**, C. V. Pop, Luciana Udrescu, Traian Stefan . Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System[J]. Chin. Phys. Lett., 2011, 28(12): 086601
[3] WANG Dan, PENG Hong-Yan, XU Xiao-Yu, CHEN Bao-Ling, WU Chun-Lei, SUN Min-Hua. Strong-Superstrong Transition in Glass Transition of Metallic Glass[J]. Chin. Phys. Lett., 2010, 27(3): 086601
[4] ZHANG Chun-Zhi, HU Li-Na**, BIAN Xiu-Fang, YUE Yuan-Zheng, . Fragile-to-Strong Transition in Al-Ni-M (M=La, Pr, Nd) Metallic Glasses[J]. Chin. Phys. Lett., 2010, 27(11): 086601
[5] M. Todica. Analysis of Rheological Behavior of Some Aqueous PEO Gels under Thermal Treatment[J]. Chin. Phys. Lett., 2009, 26(7): 086601
[6] WANG Xian-Ju, LI Xin-Fang. Influence of pH on Nanofluids' Viscosity and Thermal Conductivity[J]. Chin. Phys. Lett., 2009, 26(5): 086601
[7] M. Todica. Observation of Hydration--Drying Effect on Clotrimazole--Carbopol System[J]. Chin. Phys. Lett., 2008, 25(7): 086601
[8] LIU Zheng-Feng, WANG Xiao-Hong,. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique[J]. Chin. Phys. Lett., 2008, 25(2): 086601
[9] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 086601
[10] SUN Zhi-Wei, LIU Jie, XU Sheng-Hua. Towards an Understanding of the Influence of Sedimentation on Colloidal Aggregation by Peclet Number[J]. Chin. Phys. Lett., 2005, 22(8): 086601
[11] LIU Jie, SUN Zhi-Wei, AA Yan. Non-Gravitational Effects with Density-Matching in Evaluating the Influence of Sedimentation on Colloidal Coagulation[J]. Chin. Phys. Lett., 2005, 22(12): 086601
[12] SUN Zhi-Wei, CHEN Zhi-Ying. Computer Simulation of Influence of Sedimentation on Rapid Coagulation[J]. Chin. Phys. Lett., 2003, 20(9): 086601
Viewed
Full text


Abstract