GENERAL |
|
|
|
|
N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage |
ZHENG An-Shou1,2**, LIU Ji-Bing3, CHEN Hong-Yun2
|
1School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
2School of Mathematics and Physics, China University of Geosciences, Wuhan 430074
3Hubei Key Laboratory of Pollutant Analysis and Reuse Technology and Department of Physics, Hubei Normal University, Huangshi 435002
|
|
Cite this article: |
ZHENG An-Shou, LIU Ji-Bing, CHEN Hong-Yun 2011 Chin. Phys. Lett. 28 080303 |
|
|
Abstract An alternative scheme is presented to realize an N−qubit W state with distant atoms trapped in spatially separated optical cavities coupled by optical fibers via a fractional adiabatic passage. The present scheme is tolerant to device parameter nonuniformity and does not need to accurately control the experimental time by employing the fractional stimulated Raman adiabatic passage. In addition, the excited states of atoms are adiabatically eliminated and no additional qubit is required. Cavity decay, fiber losses and atomic spontaneous emission can all be greatly suppressed in the present scheme.
|
Keywords:
03.67.Mn
42.50.Dv
42.50.Pq
|
|
Received: 02 March 2011
Published: 28 July 2011
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
|
|
|
[1] Einstein, Podolsky B, and Rosen N 1935 Phys. Rev. 47 777
[2] Greenberger D M et al 1990 Am. J. Phys. 58 1131
[3] Nielsen A M and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University) p 182
[4] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
Bennett C H and DiVincenzo D P 2000 Nature 404 247
[5] Divincenzo D P 1995 Science 270 255
[6] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[7] Prevedel R et al 2007 J. Opt. Soc. Am. B 24 241
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661
[9] Barenco et al 1995 Phys. Rev. Lett. 74 4083
[10] Serafini, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[11] Zou X B et al 2003 Phys. Rev. A 68 024302
[12] Xiao Y F et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 485
[13] Li G X et al 2009 Phys. Rev. A 79 033827
[14] Rauschenbeutel A et al 2000 Science 288 2024
[15] Duan L M and Kimble H J 2003 Phys. Rev. Lett. 90 253601
[16] Fidio D and Vogel W 2003 J. Opt. B 5 105
[17] Lü X Y et al 2009 Phys. Rev. A 79 052330
[18] Gonta et al 2008 Phys. Rev. A 77 062312
Yu C S et al 2007 Phys. Rev. A 75 044301
[19] Bouwmeester D et al 1999 Phys. Rev. Lett. 82 1345
Pan J W et al 2000 Nature 403 515
[20] Zou X B et al 2002 Phys. Rev. A 66 044302
[21] Yamamoto T 2002 Phys. Rev. A 66 064301
[22] Mikami H 2004 Phys. Rev. A 70 052308
[23] Roos F et al 2004 Science 304 1478
[24] Sackett A et al 2000 Nature 404 256
[25] Chen Q, Xu Z and Feng M 2010 Phys. Rev. A 82 014302
[26] Xu Z Y, Hu Y M, Yang W L, Feng M and Du J F 2009 Phys. Rev. A 80 022335
[27] Lü X Y et al 2009 Opt. Express 17 14301
[28] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
Vitanov N V, Suominen K A and Shore B W 1999 J. Phys. B 32 4535
[29] Amniat-Talab M et al 2005 Phys. Rev. A 71 023805
[30] Chen L B, Ye M Y, Lin G W, Du Q H and Lin X M 2007 Phys. Rev. A 76 062304
[31] Pellizzari T 1997 Phys. Rev. Lett. 79 5242
[32] Wu Y 1996 Phys. Rev. A 54 1586
[33] Wu Y and Leung P T 1999 Phys. Rev. A 60 630
Yang W X et al 2007 J. Phys. A 40 155
[34] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
Peng P and Li F L 2007 Phys. Rev. A 75 062320
[35] Keller M et al 2003 J. Phys. B 36 613
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|