Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 078503    DOI: 10.1088/0256-307X/28/7/078503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers
Seoung-Hwan Park1**, Yong-Tae Moon2, Jeong Sik Lee2, Ho Ki Kwon2, Joong Seo Park2, Doyeol Ahn3
1 Department of Electronics Engineering, Catholic University of Daegu, Hayang, Kyeongsan, Kyeongbuk 712-702, Republic of Korea
2 SLED R&D Center, LG Innotek, 16 Woomyeon-dong, Seocho-gu, Seoul 137-140, Republic of Korea
3 Department of Electrical and Computer Engineering, University of Seoul, Seoul 130-743, Republic of Korea
Cite this article:   
Seoung-Hwan Park, Yong-Tae Moon, Jeong Sik Lee et al  2011 Chin. Phys. Lett. 28 078503
Download: PDF(910KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Optical properties of graded InGaN/GaN quantum well (QW) lasers are analyzed as improved gain media for laser diodes emitting near 500 nm. These results are compared with those of conventional InGaN/GaN QW structures. The heavy-hole effective mass around the topmost valence band is found to nearly not be affected by the inclusion of the graded layer. The graded InGaN/GaN QW structure shows a much larger matrix element than the conventional InGaN/GaN QW structure. The radiative current density dependences of the optical gain are similar to each other. However, the graded QW structure is expected to have lower threshold current density than the conventional QW structure because the former has a lower threshold carrier density than the latter.
Keywords: 85.30.De      85.30.Tv      77.65.Ly      85.35.Be      02.60.Cb     
Received: 17 September 2010      Published: 29 June 2011
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  77.65.Ly (Strain-induced piezoelectric fields)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/078503       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/078503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Seoung-Hwan Park
Yong-Tae Moon
Jeong Sik Lee
Ho Ki Kwon
Joong Seo Park
Doyeol Ahn
[1] Nakamura S and Fasol G 1997 The Blue Laser Diode (Berlin: Springer)
[2] Martin G, Botchkarev A, Rockett A and Morkoç H 1996 Appl. Phys. Lett. 68 2541
[3] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 10024
[4] Arif R A, Zhao H, Ee Y K and Tansu N 2008 IEEE J. Quantum Electron. 44 573
[5] Park S H and Chuang S L 1999 Phys. Rev. B 59 4725
[6] Takeuchi T, Amano H and Akasaki I 2000 Jpn. J. Appl. Phys. 39 413
[7] Mireles F and Ulloa S E 2000 Phys. Rev. B 62 2562
[8] Park S H 2002 J. Appl. Phys. 91 9904
[9] Kwon S Y, Baik S I, Kim Y W, Kim H J, Ko D S, Yoon E, Yoon J W, Cheong H and Park Y S 2005 Appl. Phys. Lett. 86 192105
[10] Park J and Kawakami Y 2006 Appl. Phys. Lett. 88 202107
[11] Park S H, Park J and Yoon E 2007 Appl. Phys. Lett. 90 023508
[12] Park S H, Ahn D and Kim J W 2008 Appl. Phys. Lett. 92 171115
[13] Arif R A, Ee Y K and Tansu N 2007 Appl. Phys. Lett. 91 091110
[14] Park S H, Ahn D and Kim J W 2009 Appl. Phys. Lett. 94 041109
[15] Arif R A, Zhao H and Tansu N 2008 Appl. Phys. Lett. 92 011104
[16] Zhao H, Arif R A and Tansu N 2009 IEEE J. Sel. Top. Quantum Electron. 15 1104
[17] Park S H, Ahn D, Koo B H and Kim J W 2009 Appl. Phys. Lett. 95 063507
[18] Wang L, Li R, Yang Z, Li D, Yu T, Liu N, Liu L, Chen W and Hu X 2009 Appl. Phys. Lett. 95 211104
[19] Chuang S L and Chang C S 1996 Phys. Rev. B 54 2491
[20] Park S H and Chuang S L 1998 Appl. Phys. Lett. 72 3103
[21] Ahn D 1997 Prog. Quantum Electron. 21 249
[22] Park S H, Chuang S L, Minch J and Ahn D 2000 Semicond. Sci. Technol. 15 203
[23] Chow W W, Koch S W and Sergent III M 1994 Semiconductor-Laser Physics (Berlin: Springer)
[24] Haug H and Koch S W 1993 Quantum Theory of the Optical and Electronic Properties of Semiconductors (Singapore: World Scientific)
[25] Park S H 2004 Appl. Phys. Lett. 85 890
[26] Christmas U M E, Andreev A D and Faux D A 2005 J. Appl. Phys. 98 073522
[27] Seki S, Yamanaka T, Lui W and Yokoyama K 1994 J. Appl. Phys. 75 1299
[28] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
Related articles from Frontiers Journals
[1] CHANG Jian-Guang,WU Chun-Bo,JI Xiao-Li**,MA Hao-Wen,YAN Feng,SHI Yi,ZHANG Rong. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique[J]. Chin. Phys. Lett., 2012, 29(5): 078503
[2] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 078503
[3] XUE Bai-Qing,CHANG Hu-Dong,SUN Bing,WANG Sheng-Kai,LIU Hong-Gang**. The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors[J]. Chin. Phys. Lett., 2012, 29(4): 078503
[4] LU Li,CHANG Hu-Dong,SUN Bing,WANG Hong,XUE Bai-Qing,ZHAO Wei,LIU Hong-Gang**. Solid Phase Reactions of Ni-GaAs Alloys for High Mobility III–V MOSFET Applications[J]. Chin. Phys. Lett., 2012, 29(4): 078503
[5] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 078503
[6] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 078503
[7] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 078503
[8] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 078503
[9] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 078503
[10] LI Shao-Juan, HE Xin, HAN De-Dong, SUN Lei, WANG Yi, HAN Ru-Qi, CHAN Man-Sun, ZHANG Sheng-Dong, **. Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 078503
[11] XIE Zi-Li**, ZHANG Rong, LIU Bin, XIU Xiang-Qian, SU Hui, LI Yi, HUA Xue-Mei, ZHAO Hong, CHEN Peng, HAN Ping, SHI Yi, ZHENG You-Dou . Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(8): 078503
[12] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 078503
[13] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 078503
[14] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 078503
[15] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 078503
Viewed
Full text


Abstract