Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 068401    DOI: 10.1088/0256-307X/28/6/068401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Dual-Band Coaxial Waveguide Mode Converter for High-Power Microwave Applications
ZHANG Qiang**, YUAN Cheng-Wei, LIU Lie
Lab 206, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073
Cite this article:   
ZHANG Qiang, YUAN Cheng-Wei, LIU Lie 2011 Chin. Phys. Lett. 28 068401
Download: PDF(594KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A dual-band coaxial waveguide mode converter is investigated. In the converter, the TEM mode (Coa.TEM) and TM01 circular waveguide (Cir.TM01) mode are transformed simultaneously into TE11 coaxial waveguide (Coa.TE11) mode and TE11 circular waveguide (Cir.TE11) mode, respectively. The optimized geometrical dimensions are achieved by employing the mode coupling theory. A mode converter at 1.3 GHz and 5.0 GHz is designed, and conversion efficiencies of Coa.TEM−to-Coa.TE11 and Cir.TM01−to-Cir.TE11 are 99.88% and 99.70% at central frequency, respectively. Over the frequency ranges 1.15–1.51 GHz and 4.87–5.19 GHz, the conversion efficiency exceeds 90%. A good agreement between theoretical calculations and computer simulations is observed, demonstrating the feasibility of the dual-band mode converter.
Keywords: 84.40.Az      84.40.Ba     
Received: 24 November 2010      Published: 29 May 2011
PACS:  84.40.Az (Waveguides, transmission lines, striplines)  
  84.40.Ba (Antennas: theory, components and accessories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/068401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/068401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Qiang
YUAN Cheng-Wei
LIU Lie
[1] Li Z Q, Zhong H H, Fan Y W, Shu T, Yang J H, Yuan C W, Xu L R and Zhao Y S 2008 Chin. Phys. Lett. 25 2566
[2] Shu T, Wang Y, Qian B L and Tan Q M 2002 Chin. Phys. Lett. 19 1646
[3] Belomyttsev S YA, Grishkov A A, Korovin S D and Ryzhov V V 2003 Laser Part. Beams 21 561
[4] Fan Y W, Shu T, Liu Y G, Zhong H H, Li Z Q, Wang Y, Zhao Y S and Luo L 2005 Chin. Phys. Lett. 22 164
[5] Lemke R W, Calico S E and Clark M C 1997 IEEE Trans. Plasma Sci. 25 364
[6] Korovin S D, Kurkan I K, Loginov S V, Pegel I V, Polevin S D, Volkov S N and Zherlitsyn A A 2003 Laser Part. Beams 21 175
[7] Ge X J, Zhong H H, Qian B L, Zhang J, Gao L, Jin Z X, Fan Y W and Yang J H 2010 Appl. Phys. Lett. 97 101503
[8] Robert J B, Edl S 2001 High-Power Microwave Sources and Technologies (New York: The Institute of Electrical and Electronics Engineers, Inc)
[9] Benford J, Swegle J A, Schamiloglu E 2007 High Power Microwaves 2nd edn (New York: Taylor & Francis Group)
[10] Ginzburg N S, Rozental R M and Sergeev A S 2003 Tech. Phys. Lett. 29 164
[11] Fan Y W, Zhong H H, Li Z Q, Shu T, Zhang J D, Zhang X P, Yang J H and Luo L 2007 J. Appl. Phys. 102 103304
[12] Wang T, Zhang J D, Qian B L and Zhang X P 2010 Phys. Plasmas 17 043107
[13] Ju J C, Fan Y W, Zhong H H and Shu T 2009 IEEE Trans. Plasma Sci. 37 2041
[14] Zhang Q, Yuan C W and Liu L 2010 Laser Part. Beams 28 377
[15] Ling G S and Zhou J J 2001 Chin. Phys. Lett. 18 1285
[16] Lee B M, Lee W S, Yoon Y J and So J H 2004 Electron. Lett. 40 1126
[17] Yuan C W, Liu Q X, Zhong H H and Qian B L 2005 IEEE Microwave Wirel. Compon. Lett. 15 513
[18] Du B, Zhang W J and Yang K Z 2003 Electron. Lett. 39 1049
[19] Li H F and Thumm M 1991 Int. J. Electron. 71 333
[20] Yuan C W and Zhang Q 2009 IEEE Trans. Plasma Sci. 37 1908
Related articles from Frontiers Journals
[1] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 068401
[2] YE Long-Fang, **, XU Rui-Min, ZHANG Yong, LIN Wei-Gan . Transmission Characteristics of a Generalized Parallel Plate Dielectric Waveguide at THz Frequencies[J]. Chin. Phys. Lett., 2011, 28(12): 068401
[3] YANG Li-Li, LIU Gang-Qin, PAN Xin-Yu, CHEN Dong-Min. Design and Application of a Near Field Microwave Antenna for the Spin Control of Nitrogen-Vacancy Centers[J]. Chin. Phys. Lett., 2010, 27(3): 068401
[4] SI Li-Ming, SUN Hou-Jun, LV Xin. Numerical Simulations of Backward-to-Forward Leaky-Wave Antenna with Composite Right/Left-Handed Coplanar Waveguide[J]. Chin. Phys. Lett., 2010, 27(3): 068401
[5] ZHANG Min, CHEN Hui, ZHOU Pin, ZHANG Xiang-Yang. An Efficient Simulated Sea Slope Model for Backscattering from a Non-Gaussian Sea Surface[J]. Chin. Phys. Lett., 2009, 26(9): 068401
[6] LU Zhi-Gang, GONG Yu-Bin, GAI Wei, GAO Peng, GAO Feng, WEI Yan-Yu, WANG Wen-Xiang. Experimental Test of 7.8GHz Power Extractor Using Dielectric Loaded Rectangular Waveguide Structures[J]. Chin. Phys. Lett., 2009, 26(2): 068401
[7] WANG Xiao-Jie, LIU Fu-Kun, ZHAO Lian-Min, JIA Hua, LIU Hong-Bao, KUANGGuang-Li. Design of a TE10-TE30 Rectangular Mode Converter for 4.6GHz LHCD Launcher in the Experimental Advanced Superconducting Tokamak[J]. Chin. Phys. Lett., 2009, 26(2): 068401
[8] JIANG Tao, CUI Wan-Zhao, MA Wei, YUAN Yu, WANG Dong-Xing, RANLi-Xin. High Directive Cavity Antenna Based on One-Dimensional LHM-RHM Resonator[J]. Chin. Phys. Lett., 2009, 26(10): 068401
[9] A Zhong-Tuan, WANG Pei, CAO Yong, TANG Hong-Gao, MING Hai. Pure Reflection and Refraction of a Surface Polariton by a Matched Waveguide Structure[J]. Chin. Phys. Lett., 2006, 23(9): 068401
[10] HE Xiao-Yong, CAO Jun-Cheng, FENG Song-Lin. Simulation of the Propagation Property of Metal Wires Terahertz Waveguides[J]. Chin. Phys. Lett., 2006, 23(8): 068401
[11] LOU Shu-Qin, GUO Tie-Ying, FANG Hong, LI Hong-Lei, JIAN Shui-Sheng. A New Type of Terahertz Waveguides[J]. Chin. Phys. Lett., 2006, 23(1): 068401
[12] ZHANG Min, YUAN Tao, BAI Lu, LI Le-Wei, WU Zhen-Sen. New Technique for Mixed Potential Integral Equation Formulation in Multilayered Media and Its Application of Electrically Small Antennas Connected with Vertical Via-Holes[J]. Chin. Phys. Lett., 2005, 22(2): 068401
[13] LI Yan-Ping, YU Jin-Zhong, XIA Jin-Song, Chen Shao-Wu. Single-Mode Behaviour Judgment of Optical Waveguides by Imaginary-Distance Beam Propagation Method Under Perfectly Matched Layer Boundary Condition[J]. Chin. Phys. Lett., 2004, 21(5): 068401
[14] ZHOU Shu-rong, HUANG Guang-li. A Method of Calculation of the Solar Radio Flux Density for High Spatial Resolution Observations[J]. Chin. Phys. Lett., 1999, 16(3): 068401
Viewed
Full text


Abstract