Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060501    DOI: 10.1088/0256-307X/28/6/060501
GENERAL |
Fractal Basins in the Lorenz Model
I. Djellit1**, J. C. Sprott2, M. R. Ferchichi1
1Laboratory of Mathematics, Dynamics and Modelization, Annaba-Algeria
2Department of Physics, University of Wisconsin, Madison, WI 53706 USA
Cite this article:   
I. Djellit, J. C. Sprott, M. R. Ferchichi 2011 Chin. Phys. Lett. 28 060501
Download: PDF(474KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Lorenz mapping is a discretization of a pair of differential equations. It illustrates the pertinence of computational chaos. We describe complex dynamics, bifurcations, and chaos in the map. Fractal basins are displayed by numerical simulation.
Keywords: 05.45.-a     
Received: 29 December 2010      Published: 29 May 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
I. Djellit
J. C. Sprott
M. R. Ferchichi
[1] Lorenz E N 1989 Physica D 35 299
[2] Whitehead R R and MacDonald N 1984 Physica D 31 401
[3] Tsybullin V and Yudovich V 1998 Int. J. Difference Equat. Appl. 4 397
[4] ELabbasy E M, Agiza H N, EL-Metwally H and Elsadany A A 2007 Int. J. Nonlin. Sci. 4 171
[5] Mira C, Gardini L, Barugola A and Cathala J C 1996 Chaotic Dynamics in Two-Dimensional Noninvertible Maps (Singapore: World Scientific)
[6] Marotto F R 1978 J. Math. Anal. Appl. 63 199
[7] Froyland J 1983 Physica D 8 423
[8] Frouzakis C E, Kevrekidis I G and Peckham B B 2003 Physica D 177 101
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060501
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 060501
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 060501
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060501
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 060501
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 060501
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060501
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 060501
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 060501
Viewed
Full text


Abstract