Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060502    DOI: 10.1088/0256-307X/28/6/060502
GENERAL |
A Rotating Pendulum Linked by an Oblique Spring
CAO Qing-Jie1,2**, HAN Ning2, TIAN Rui-Lan2
1Centre for Nonlinear Dynamics Research, School of Astronautics, Harbin Institute of Technology, Harbin 150001
2Centre for Nonlinear Dynamics Research, Department of Mathatics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043
Cite this article:   
CAO Qing-Jie, HAN Ning, TIAN Rui-Lan 2011 Chin. Phys. Lett. 28 060502
Download: PDF(1260KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a novel model which comprises a rotating pendulum linked by an oblique spring pinned to its rigid support. This model provides a cylindrical dynamical system with both smooth and discontinuous regimes depending on the value of a system parameter and also the dynamics transient relying on the coupling strength between the pendulum and the linked spring. The presented system behaves with both standard (smooth) and nonstandard (discontinuous) nonlinear dynamics of equilibrium bifurcations and the periodic patterns when it is unperturbed. Complicated resonant structures of period, quasi-period and stochastic phenomena are presented for the system with unique harmonic perturbation. The chaotic behavior of the system perturbed by both viscous-damping and external excitations is also demonstrated.
Keywords: 05.45.-a      02.30.Hq      05.45.Ac     
Received: 15 March 2011      Published: 29 May 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Hq (Ordinary differential equations)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060502       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Qing-Jie
HAN Ning
TIAN Rui-Lan
[1] Fan Y 445 History Records of the Eastern Han Dynast: Zhang Heng Biography chap 59 p 49 (in Chinese)
[2] Feng R 2006 Acta Seismogica Sinica 19 (6) 104 http://baike.baidu.com/view/60377
[3] Galileo G 1592 De motu (on motion) chap 8
[4] Matthews M R 2001 J. Sci. Edu. Technol. 10 359
[5] Liang Y, Feeny B F 2006 Nonlin. Dyn. 46 17
[6] Dullin H R 1994 Z. Phys. B 93 521
[7] Lee W and Park H 1997 Non. Dyn. 14 211
[8] Miles J 1984 Z. Phys. D 11 309
[9] Lobas L G, Koval'chuk V V and bambura O V 2007 Int. Appl. Mech. 43 690
[10] Yu P and Zhu S H 2005 Commun. Non. Sci. Numer. Simul. 10 869
[11] Lai S K and Xiang Y 2010 Comput. Math. Appl. 60 2078
[12] Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2008 Int. J. Nonlin. Mech. 43 462
[13] Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2006 Phys. Rev. E 74 046218
[14] Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soc. A 366 635
[15] Golubitsky M and Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory (New York: Springer)
[16] Budd C and Lamba H 1994 Phys. Rev. E 50 84
[17] Bressloff P C and Stark J 1990 Phys. Lett. A 150 187
[18] Chernikov A A, Sagdeev R Z, Usikov D A, M Yu Zakbarov, and Zaslavsky G M 1987 Nature 326 559
[19] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics (New York: Springer)
[20] Guckenheimer J and Homes P 1999 Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields (New York: Springer)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060502
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 060502
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 060502
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060502
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 060502
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 060502
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060502
[14] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 060502
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 060502
Viewed
Full text


Abstract