Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060203    DOI: 10.1088/0256-307X/28/6/060203
GENERAL |
A Direct Linearization Method of the Non-Isospectral KdV Equation
ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan
Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan 2011 Chin. Phys. Lett. 28 060203
Download: PDF(450KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Direct linearization method is used to solve the non-isospectral KdV equation. The corresponding singular linear integral equation and the time dependence of measure in the singular linear integral equation are proposed. Furthermore, the solutions to the non-isospectral modified KdV equation are also derived by using the singular linear integral equation of the non-isospectral KdV equation.
Keywords: 02.30.Ik      02.30.Jr      05.45.Yv     
Received: 15 December 2010      Published: 29 May 2011
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060203       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Song-Lin
ZHANG Da-Jun
CHEN Deng-Yuan
[1] Chen H H and Liu C S 1976 Phys. Rev. Lett. 37 693
[2] Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 41 2141
[3] Calogero F and Degasperis A 1978 Commun. Math. Phys. 63 155
[4] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[5] Wadati M and Toda M 1972 J. Phys. Soc. Jpn. 32 1403
[6] Ablowitz M J and Segur H 1981 Solitons and the inverse scattering transform (Philadelphia, PA: SIAM)
[7] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University)
[8] Ning T K, Chen D Y and Zhang D J 2004 Chaos Solitons & Fractals 21 395
[9] Fokas A S and Ablowitz M J 1981 Phys. Rev. Lett. 47 1096
[10] Fokas A S and Ablowitz M J 1983 Phys. Lett. A 94 67
[11] Fokas A S and Ablowitz M J 1983 Stud. Appl. Math. 69 211
[12] Santini P M, Ablowitz M J and Fokas A S 1984 J. Math. Phys. 25 2614
[13] Nijhoff F W, Quispel G R W, Van Der Linden J and Caple H W 1983 Phys. Lett. A 119 101
[14] Nijhoff F W, Van Der Linden J, Quispel G R W and Caple H W 1982 Phys. Lett. A 89 106
[15] Quispel G R W, Nijhoff F W and Caple H W 1982 Phys. Lett. A 91 143
[16] Fokas A S and Ablowitz M J 1982 AIP Conf. Proc. 88 237
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060203
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 060203
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 060203
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 060203
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060203
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 060203
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060203
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 060203
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060203
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060203
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 060203
[12] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 060203
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 060203
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 060203
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060203
Viewed
Full text


Abstract