GENERAL |
|
|
|
|
N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation |
CHEN Shou-Ting1**, ZHU Xiao-Ming1, LI Qi2, CHEN Deng-Yuan1
|
1Department of Mathematics, Shanghai University, Shanghai 200444
2College of Mathematics and Information Science, East China Institute of Technology, Jiangxi 310018
|
|
Cite this article: |
CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi et al 2011 Chin. Phys. Lett. 28 060202 |
|
|
Abstract The bilinear form of the four-potential isospectral Ablowitz–Ladik (AL) equation is derived by the dependent variable transformation. The N-soliton solutions of the equation are obtained through the Hirota method. Moreover, the double Casoratian solution is found by means of the double Casoratian technique.
|
Keywords:
02.30.Ik
05.45.Yv
|
|
Received: 19 March 2011
Published: 29 May 2011
|
|
|
|
|
|
[1] Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598
[2] Ablowitz M J and Ladik J F 1976 J. Math. Phys. 17 1011
[3] Zhang D J and Chen D Y 2002 Chaos, Solitons & Fractals 14 573
[4] Gesztesy F et al 2008 Stud. Appl. Math. 120 361
[5] Zhang D J and Chen D Y 2002 J. Phys. A: Math. Gen. 35 7225
[6] Zeng Y B et al 1995 J. Phys. A: Math. Gen. 28 113
[7] Geng X G et al 2007 Stud. Appl. Math. 118 281
[8] Geng X G et al 2007 J. Math. Anal. Appl. 327 829
[9] Tamizhmani K M and Ma W X 2000 J. Phys. Soc. Jpn. 69 351
[10] Zhang D J et al 2006 Phys. Lett. A 359 458
[11] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 393
[12] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 419
[13] Ablowitz M J, Prinari B and Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge: Cambridge University)
[14] Geng X G 1989 Acta Math. Sci. 9 21 [15] Li Q 2011 Double Casoratian solutions of the Ablowitz–Ladik equation (in preparation)
[16] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[17] Gegenhasi et al 2006 Inverse Problems 22 1677
[18] Wu H and Zhang D J 2003 J Phys A: Gen Math. 36 4867
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|