Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060202    DOI: 10.1088/0256-307X/28/6/060202
GENERAL |
N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation
CHEN Shou-Ting1**, ZHU Xiao-Ming1, LI Qi2, CHEN Deng-Yuan1
1Department of Mathematics, Shanghai University, Shanghai 200444
2College of Mathematics and Information Science, East China Institute of Technology, Jiangxi 310018
Cite this article:   
CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi et al  2011 Chin. Phys. Lett. 28 060202
Download: PDF(1370KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The bilinear form of the four-potential isospectral Ablowitz–Ladik (AL) equation is derived by the dependent variable transformation. The N-soliton solutions of the equation are obtained through the Hirota method. Moreover, the double Casoratian solution is found by means of the double Casoratian technique.
Keywords: 02.30.Ik      05.45.Yv     
Received: 19 March 2011      Published: 29 May 2011
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060202       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Shou-Ting
ZHU Xiao-Ming
LI Qi
CHEN Deng-Yuan
[1] Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598
[2] Ablowitz M J and Ladik J F 1976 J. Math. Phys. 17 1011
[3] Zhang D J and Chen D Y 2002 Chaos, Solitons & Fractals 14 573
[4] Gesztesy F et al 2008 Stud. Appl. Math. 120 361
[5] Zhang D J and Chen D Y 2002 J. Phys. A: Math. Gen. 35 7225
[6] Zeng Y B et al 1995 J. Phys. A: Math. Gen. 28 113
[7] Geng X G et al 2007 Stud. Appl. Math. 118 281
[8] Geng X G et al 2007 J. Math. Anal. Appl. 327 829
[9] Tamizhmani K M and Ma W X 2000 J. Phys. Soc. Jpn. 69 351
[10] Zhang D J et al 2006 Phys. Lett. A 359 458
[11] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 393
[12] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 419
[13] Ablowitz M J, Prinari B and Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge: Cambridge University)
[14] Geng X G 1989 Acta Math. Sci. 9 21
[15] Li Q 2011 Double Casoratian solutions of the Ablowitz–Ladik equation (in preparation)
[16] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[17] Gegenhasi et al 2006 Inverse Problems 22 1677
[18] Wu H and Zhang D J 2003 J Phys A: Gen Math. 36 4867
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060202
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 060202
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 060202
[9] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 060202
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 060202
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060202
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 060202
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 060202
[14] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202
Viewed
Full text


Abstract