Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 026401    DOI: 10.1088/0256-307X/28/2/026401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Evaluation of a Filter-Based Model for Computations of Cavitating Flows
HUANG Biao, WANG Guo-Yu**
School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing 100081
Cite this article:   
HUANG Biao, WANG Guo-Yu 2011 Chin. Phys. Lett. 28 026401
Download: PDF(1077KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To identify ways to improve the predictive capability of the current RANS-based cavitating turbulent closure, a filter-based model (FBM) is introduced by considering sub-filter stresses. The sub-filter stress is constructed directly by using the filter size and the conventional turbulence closure. The model is evaluated in steady cavitating flow over a blunt body revolution and unsteady cavitating flow around a Clark-Y hydrofoil respectively. Compared with the experimental data, those results indicate that FBM can be used to improve the predictive capability considerably.
Keywords: 64.70.Fm      47.55.Ca     
Received: 17 May 2010      Published: 30 January 2011
PACS:  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/026401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/026401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Biao
WANG Guo-Yu
[1] Kawanami Y, Kato H and Yamaguchi H 1997 J. Fluids. Engin. 119 788
[2] Wang, G Y, Huang B and Zhang B 2010 Mod. Phys. Lett. B 13 1357
[3] Wang G and Ostoja-Starzewski M 2007 Appl. Math. Modelling 31 417
[4] Koutmos P and Mavridis C 1997 Int. J. Heat Fluid Flow 18 297
[5] Johansen S T, Wu J and Shyy W 2004 Int. J. Heat Fluid Flow 25 10
[6] Launder B E and Spalding D B 1974 Computat. Methods Appl. Mech. Engin. 3 269
[7] Kubota A, Kato H and Yamaguchi H 1992 J. Fluid Mech. 240 59
[8] Rouse H and McNown J S 1948 Bulletin 32 (State University of Iowa)
[9] Katz 1984 J. Fluid Mech. 140 397
[10] Wang G Y, Senocak I and Shyy W 2001 Prog. Aerospace Sci. 375 51
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 026401
[2] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 026401
[3] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 026401
[4] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 026401
[5] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 026401
[6] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 026401
Viewed
Full text


Abstract