GENERAL |
|
|
|
|
Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field |
CAI Jiang-Tao1,2, ABLIZ Ahmad1**, BAI Yan-Kui3, JIN Guang-Sheng4
|
1School of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054
2State Key laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
3College of Physical Science and Information Engineering, Hebei Normal University, Shijiazhuang, Hebei 050016
4School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
CAI Jiang-Tao, ABLIZ Ahmad, BAI Yan-Kui et al 2011 Chin. Phys. Lett. 28 020307 |
|
|
Abstract We investigate the effects of different components of the Dzyaloshinskii–Moriya (DM) anisotropic antisymmetric interaction on optimal dense coding with a two-qubit Heisenberg XXZ chain in the presence and in the absence of external magnetic fields. The anisotropic coupling parameter Δ, isotropic coupling parameter J, and the DM interaction parameters are found to be effective for optimal dense coding, while the magnetic field turns out to be destructive. Moreover, the results show that the case of antiferromagnetic (AFM) is more ideal for optimal dense coding than the case of ferromagnetic (FM) in general. In the case of AFM, by comparison of the two cases with the same fixed x− and z−component parameters of DM interaction (Dx and Dz), the appropriate model for optimal dense coding is indicated for the different value intervals of Δ. Comparison of the effects of Dz and Dx on optimal dense coding is made and their dominant regions are clarified.
|
Keywords:
03.67.-a
03.65.Ud
75.10.Jm
|
|
Received: 19 October 2010
Published: 30 January 2011
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
|
|
|
[1] Neilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[4] Bennett C H et al 1992 Phys. Rev. Lett. 69 2881
[5] Bareno A and Ekert A K 1995 J. Mod. Opt. 42 1253
[6] Braunstein S L et al 2000 Phys. Rev. A 61 042302
[7] Bose S et al 2000 J. Mod. Opt. 47 291
[8] Qiu L et al 2009 Physica Scripta 79 015005
[9] Zhang G F 2009 Physica Scripta 79 015001
[10] Mattle K et al 1996 Phys. Rev. Lett. 76 4656
[11] Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
[12] Holevo A S 1973 Probl. Inf. Transm. 9 177
[13] Nielson M A 2001 Phys. Rev. A 63 022114
[14] Wang X G 2001 Phys. Rev. A 64 012313
[15] Kamta G L et al 2002 Phys. Rev. Lett. 88 107901
[16] O'Connor K M et al 2001 Phys. Rev. A 63 052302
[17] Abliz A et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215503
[18] Zhang G F et al 2005 Opt. Commun. 245 457
[19] Cai J T et al 2010 Opt. Commun. 283 4415
[20] Li D C et al 2008 J. Phys: Condens. Matter 20 325229
[21] Kargarian M et al 2009 Phys. Rev. A 79 042319
[22] Ma X S 2008 Opt. Commun. 281 484
[23] Qiu L, Wang A M and Ma X S 2007 Physica A 383 325
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|