Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 128503    DOI: 10.1088/0256-307X/28/12/128503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Design of a 1200-V Thin-Silicon-Layer p-Channel SOI LDMOS Device
HU Sheng-Dong1,2**, ZHANG Ling1, LUO Xiao-Rong3, ZHANG Bo3, LI Zhao-Ji3, WU Li-Juan3
1College of Communication Engineering, Chongqing University, Chongqing 400044
2National Laboratory of Analogue Integrated Circuits, Sichuan Institute of Solid-State Circuits, No. 24 Research Institute of China, Electronics Technology Group Corporation, Chongqing 400060
3State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
HU Sheng-Dong, ZHANG Ling, LUO Xiao-Rong et al  2011 Chin. Phys. Lett. 28 128503
Download: PDF(651KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A 1200-V thin-silicon-layer p-channel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor is designed. The device named INI SOI p-LDMOS is characterized by a series of equidistant high concentration n+ islands inserted at the interface of a top silicon layer and a buried oxide layer. Accumulation−mode holes, caused by the electric potential dispersion between the device surface and the substrate, are located in the spacing between two neighboring n+ islands, and greatly enhance the electric field of the buried oxide layer and therefore, effectively increase the device breakdown voltage. Based on a 2−µm −thick buried oxide layer and a 1.5-µm −thick top silicon layer, a breakdown voltage of 1224 V is obtained, resulting in the high electric field (608 V/µm ) of the buried oxide layer.
Keywords: 85.30.DE      85.30.-Z      85.30.Mn     
Received: 04 July 2011      Published: 29 November 2011
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.-z (Semiconductor devices)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/128503       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/128503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Sheng-Dong
ZHANG Ling
LUO Xiao-Rong
ZHANG Bo
LI Zhao-Ji
WU Li-Juan
[1] Sumida H 2002 IEEE International SOI Conference p 64
[2] Zhu S Y and Li M F 2005 Chin. Phys. Lett. 22 2020
[3] Vanhoenacker-Janvier D, El Kaamouchi M and Si Moussa M 2008 IET Circuits Devices Syst. 2 151
[4] Merchant S et al 1991 Proc. ISPSD p 31
[5] Zhang S D et al 1999 IEEE Trans. Electron. Devices 46 1036
[6] Luo X R et al 2007 Solid State Electron. 51 493
[7] Luo X R et al 2008 IEEE Electron. Device Lett. 29 1395
[8] Park J M et al 2003 Solid-State Electron. 47 275
[9] Zhang B et al 2009 IEEE Trans. Electron. Devices 56 2327
[10] Luo X R et al 2010 IEEE Electron. Device Lett. 31 594
[11] Luo X R et al 2009 IEEE Trans. Electron. Devices 56 1659
[12] Hu S D et al 2011 Int. J. Electron. 98 971
[13] Hu S D, Zhang B, Li Z J and Luo X R 2010 Chin. Phys. B 19 037303-1-7
[14] Luo X R, Wang Y G and Deng H et al 2010 IEEE Trans. Electron. Devices 57 535
[15] Hu S D, Luo X R, Zhang B and Li Z J 2010 Electron. Lett. 46 82
[16] Luo X R, Zhang B and Li Z J 2008 IEEE Trans. Electron. Devices 55 1756
[17] Elahipanah H and Orouji A A 2010 IEEE Trans. Electron. Devices 57 1959
[18] Kim J, Kim S G, Roh T M et al 1998 Proc. ISPSD p 375
[19] Letavic T and Simpson M 2000 US Patent 6127703
[20] Letavic T, Albu R, Dufort B et al 2002 Proc. ISPSD p 73
[21] Wu L J, Hu S D, Zhang B and Luo X R et al 2011 Chin. Phys. B 20 087101
[22] Zheng Z S, Liu Z L and Zhang G Q et al 2005 Chin. Phys. Lett. 22 654
[23] Yoshino M, Shimizu K and Terashima T 2010 Proc. ISPSD p 93
[24] Nakagawa K, Ashida T, Takeuchi H and Fujii K 1982 IEDM p 72
[25] TMA MEDICI 4. 2 (Palo Alto CA: Technology Modeling Associates Inc.)
Related articles from Frontiers Journals
[1] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 128503
[2] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 128503
[3] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 128503
[4] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 128503
[5] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 128503
[6] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 128503
[7] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 128503
[8] XU Xiao-Bo**, ZHANG He-Ming . An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 128503
[9] LIU Zhang-Li, **, HU Zhi-Yuan, ZHANG Zheng-Xuan, SHAO Hua, NING Bing-Xu, BI Da-Wei, CHEN Ming, ZOU Shi-Chang . Enhanced Total Ionizing Dose Susceptibility in Narrow Channel Devices[J]. Chin. Phys. Lett., 2011, 28(7): 128503
[10] CHEN Bin**, YANG Yin-Tang, CHAI Chang-Chun, ZHANG Xian-Jun . Quantitatively Exploring the Effect of a Triangular Electrode on Performance Enhancement in a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector[J]. Chin. Phys. Lett., 2011, 28(6): 128503
[11] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 128503
[12] FENG Lie-Feng**, LI Yang, LI Ding, WANG Cun-Da, ZHANG Guo-Yi, YAO Dong-Sheng, LIU Wei-Fang, XING Peng-Fei . Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 128503
[13] XIA Xiao-Chuan, WANG Hui, ZHAO Yang, WANG Jin, ZHAO Jian-Ze, SHI Zhi-Feng, LI Xiang-Ping, LIANG Hong-Wei, ZHANG Bao-Lin, DU Guo-Tong, ** . Ultraviolet-Visible Electroluminescence of a p-ZnO:As/n-Si Device Formed by the GaAs Interlayer Doping Method[J]. Chin. Phys. Lett., 2011, 28(10): 128503
[14] ZHOU Bin, WANG Jin-Yan**, MENG Di, LIN Shu-Xun, FANG Min, DONG Zhi-Hua, YU Min, HAO Yi-Long, Cheng P. WEN . A High Breakdown Voltage AlGaN/GaN MOSHEMT Using Thermal Oxidized Al-Ti as the Gate Insulator[J]. Chin. Phys. Lett., 2011, 28(10): 128503
[15] Seoung-Hwan Park, Woo-Pyo Hong. Wetting Layer Effect on Optical Gain of Strained CdTe/ZnTe Pyramidal Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(9): 128503
Viewed
Full text


Abstract