CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Comparison of GaN-Based Light-Emitting Diodes by Using the AlGaN Electron-Blocking Layer and InAlN Electron-Blocking Layer |
CHEN Jun1,2, FAN Guang-Han1**, PANG-Wei2, ZHENG Shu-Wen1
|
1Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631
2Experimental Teaching Center, Guangdong University of Technology, Guangzhou 510006
|
|
Cite this article: |
CHEN Jun, FAN Guang-Han, PANG-Wei et al 2011 Chin. Phys. Lett. 28 128501 |
|
|
Abstract Optical properties of GaN-based light-emitting diodes (LEDs) are studied numerically by using AlGaN and InAlN electron-blocking layers (EBLs). Through the simulations of emission spectra, carrier concentration distribution, energy band, electrostatic field, internal quantum efficiency and output power, the results show that the LEDs with design of the InAlN EBL structure have a better performance over the original LEDs using an AlGaN EBL. The spectrum intensity and output power are enhanced significantly, and the efficiency droop of internal quantum efficiency is improved effectively with this design of InAlN EBL structure. It is proved that the strengths of carrier confinement and electron leakage current play a critical role in the performance of luminescence in LEDs.
|
Keywords:
85.60.Jb
85.50.-n
87.15.A-
78.60.Fi
|
|
Received: 13 August 2011
Published: 29 November 2011
|
|
PACS: |
85.60.Jb
|
(Light-emitting devices)
|
|
85.50.-n
|
(Dielectric, ferroelectric, and piezoelectric devices)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
|
|
|
[1] Dai K H, Wang L S, Huang D X, Soh C B and Chua S J 2011 Chin. Phys. Lett. 28 098501
[2] Wu M, Zeng Y P, Wang J X and Hu Q 2011 Chin. Phys. Lett. 28 068502
[3] Pan Y B, Hao M S, Qi S L, Fang H and Zhang G Y 2010 Chin. Phys. Lett. 27 038503
[4] Sun Y J, Yu T J, Jia C Y, Chen Z Z, Tian P F, Kang X N, Lian G J, Huang S and Zhang G Y 2010 Chin. Phys. Lett. 27 127303
[5] Ruan J, Yu T J, Jia C Y, Tao R C, Wang Z G and Zhang G Y 2009 Chin. Phys. Lett. 26 087802
[6] Zhang Y Y and Fan G H 2011 Chin. Phys. B 20 048502
[7] Li Y L, Huang Y R and Lai Y H 2007 Appl. Phys. Lett. 91 181113
[8] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[9] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
[10] Kim A Y, Go W, Steigerwald D A, Wierer J J, Gardner N F, Sun J, Stockman S A, Martin P S, Krames M R, Kern R S and Steranka F M 2001 Phys. Status Solidi A 188 15
[11] Rozhansky I V and Zakheim D A 2006 Phys. Status Solidi C 3 2160
[12] Rozhansky I V and Zakheim D A 2007 Phys. Status Solidi A 204 227
[13] Efremov A A, Bochkareva N I, Gorbunov R I, Larinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605
[14] Shen Y C, Müller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[15] Gardner N F, Müller G O, Shen Y C, Chen G, Watanabe S, Götz W and Krames M R 2007 Appl. Phys. Lett. 91 243506
[16] Chichibu S F, Azuhata T, Sugiyama M, Kitamura T, Ishida Y, Okumurac H, Nakanishi H, Sota T and Mukai T 2001 J. Vac. Sci. Technol. B 19 2177
[17] Xie J, Ni X, Fan Q, Shimada R, Ozgur U and Morkoc H 2008 Appl. Phys. Lett. 93 121107
[18] Pope I A, Smowton P M, Blood P, Thomson J D, Kappers M J and Humphreys C J 2003 Appl. Phys. Lett. 82 2755
[19] Mánuel J M, Morales F M, Lozano J G, González D, García R, Lim T, Kirste L, Aidam R and Ambacher O 2010 Acta Mater. 58 4120
[20] Sugita K, Tanaka M, Sasamoto K, Bhuiyan A G, Hashimoto A and Yamamoto A 2011 J. Cryst. Growth 318 505
[21] Akazawa M, Gao B, Hashizume T, Hiroki M, Yamahata S and Shigekawa N 2011 J. Appl. Phys. 109 013703
[22] Carlin J F and Ilegems M 2003 Appl. Phys. Lett. 83 668
[23] Peng T, Piprek J, Qiu G, Olowolafe J O, Unruh K M, Swann C P and Schubert E F 1997 Appl. Phys. Lett. 71 2439
[24] Yamaguchi S, Kariya M, Nitta S, Kato H, Takeuchi T, Wetzel C, Amano H and Akasaki I 1998 J. Cryst. Growth 195 309
[25] Lukitsch M J, Danylyuk Y V, Naik V M, Huang C, Auner G W, Rimai L and Naik R 2001 Appl. Phys. Lett. 79 632
[26] Kim H J, Choi S, Kim S S, Ryou J H, Yoder P D, Dupuis R D, Fischer A M, Sun K, and Ponce F A 2010 Appl. Phys. Lett. 96 101102
[27] Gacevic Z, Garrido S F, Rebled J M, Estrade S, Peiro F, and Calleja E 2011 Appl. Phys. Lett. 99 031103
[28] Xie J Q, Ni X F, Wu M, Leach J H, Özgür Ü and Morkoç H 2007 Appl. Phys. Lett. 91 132116
[29] Choi S, Kim H J, Kim S S, Liu J P, Kim J, Ryou J H, Dupuis R D, Fischer A M and Ponce F A 2010 Appl. Phys. Lett. 96 221105
[30] APSYS by Crosslight Software Inc., Burnaby, Canada (http://www.crosslight.com)
[31] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
[32] Piprek J and Nakamura S 2002 IEEE Proc. J Optoelectron. 149 145
[33] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[34] Kuo Y K, Wang T H, Chang J Y and Tsai M C 2011 Appl. Phys. Lett. 99 091107
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|