Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120306    DOI: 10.1088/0256-307X/28/12/120306
GENERAL |
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
LI Chun-Yan1,2,3, LI Yan-Song1,2**
1State Key Laboratory of Low-dimensional Quantum Physics, and Department of Physics, Tsinghua University, Beijing 100084
2Tsinghua National Laboratory for Information Science and Technology, Beijing 100084
3Department of Physics, National University of Defense Technology, Changsha 410073
Cite this article:   
LI Chun-Yan, LI Yan-Song 2011 Chin. Phys. Lett. 28 120306
Download: PDF(402KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement statesof photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed.
Keywords: 03.67.Hk      03.67.Dd      03.67.Pp     
Received: 04 June 2011      Published: 29 November 2011
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120306       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Chun-Yan
LI Yan-Song
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod Phys. 74 145
[3] Bennett C H and Brassard G 1984 In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India December 1984) p 175
[4] Lo H K and Chau H F 1999 Science 283 2050
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[7] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[9] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[10] Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
[11] Wang C, Zhang J F et al 2005 Sci. Chin. G Phys. Mech. Astron. 48 237
[12] Sun S H, Gao M et al 2008 Chin. Phys. Lett. 25 2358
[13] Li J L and Wang C 2010 Chin. Phys. Lett. 27 110303
[14] Cabello A 2000 Phys. Rev. Lett. 85 5635
[15] Zhang Y S and Li C F and Guo G C 2001 Phys. Rev. A 64 024302
[16] Li C Y, Li X H et al 2007 Chin. Sci. Bull. 52 1162
[17] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
[18] Garnier A A et al 2007 Phys. Rev. A 75 053823
[19] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[20] Hu C Y et al 2009 Phys. Rev. B 80 205326
[21] Hu C Y and Rarity J G 2011 Phys. Rev. B 83 115303
[22] Wang C et al 2011 Phys. Rev. A 84 032307
[23] Bonato C et al 2010 Phys. Rev. Lett. 104 160503
[24] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[25] Cai Q Y 2006 Phys. Lett. A 351 23
[26] Deng F G et al 2006 Chin. Phys. Lett. 23 1084
[27] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[28] Li C Y et al 2005 Chin. Phys. Lett. 22 1049
[29] Li X H et al 2006 Phys. Rev. A 74 054302
[30] Li C Y et al 2006 Chin. Phys. Lett. 23 2896
[31] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[32] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[33] Achilles D et al 2004 J. Mod. Optics 51 1499
[34] Achilles D et al 2003 Opt. Lett. 28 2387
[35] Cabello C 2000 Phys. Rev. Lett. 85 5635
[36] Berezovsky J et al 2008 Science 320 349
[37] Clark S M et al 2009 Phys. Rev. Lett. 102 247601
[38] Xu X, Yao W et al 2009 Nature 459 1105
[39] Reithmaier J P et al 2004 Nature 432 197
[40] Yoshie T et al 2004 Nature 432 200
[41] Abe E et al 2011 Appl. Phys. Lett. 98 251108
[42] Reitzenstein S et al 2007 Appl. Phys. Lett. 90 251109
[43] Berezovsky J et al 2008 Science 320 349
[44] Greilich A et al 2009 Nat. Phys. 5 262
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 120306
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 120306
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 120306
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 120306
[5] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 120306
[6] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 120306
[7] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 120306
[8] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 120306
[9] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 120306
[10] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 120306
[11] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 120306
[12] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 120306
[13] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 120306
[14] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 120306
[15] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 120306
Viewed
Full text


Abstract