GENERAL |
|
|
|
|
New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift |
S. Abdel-Khalek1,2**, M. M. A. Ahmed2,3, A-S F. Obada3
|
1Department of Mathematics, Faculty of Science, Sohag University, 82524 Sohag, Egypt
2Department of Mathematics, Faculty of Science, Taif University, 21974 Taif, Saudi Arabia
3Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
|
|
Cite this article: |
S. Abdel-Khalek, M. M. A. Ahmed, A-S F. Obada 2011 Chin. Phys. Lett. 28 120305 |
|
|
Abstract We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.
|
Keywords:
03.65.Ud
03.65.Yz
74.81.Fa
|
|
Received: 01 April 2011
Published: 29 November 2011
|
|
PACS: |
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
74.81.Fa
|
(Josephson junction arrays and wire networks)
|
|
|
|
|
[1] Sergent M, Scully M O and Lamb W E 1974 Laser Physics (Reading, Mass: Adison-Wesely)
[2] Allen L and Eberly J H 1975 Optical Resonance and Two-Level Atoms (New York: Wiley)
[3] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[4] Narozhny N B, Sanchez J J and Eberly J H 1981 Phys. Rev. A 23 236
[5] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[6] Abdel-Hafez A M, Obada A S F and Ahmed M M A 1987 J. Phys. A 20 L359
[7] Law C W, Eberly J H 1991 Phys. Rev. 43 6337
[8] Abdel-Aty M, Abdel-Khalek S and Obada A S F 2000 Opt. Rev. 7 499
[9] von Neumann J 1955 Mathematical Foundations of Quantum Mechanics (Princeton, NJ: Princeton University Press)
[10] Wehrl A 1991 Rep. Math. Phys. 30 119
[11] Bužek V, Keitel C H and Knight P L 1995 Phys. Rev. A 51 2575
[12] Anderson A and Halliwell J J 1993 Phys. Rev. D 48 2753
[13] A Miranowicz A, Bajer J, Wahiddin M R B and Imoto N 2001 J. Phys. A: Math. Gen. 34 3887
[14] Jex I and Orlowski A 1994 J. Mod. Opt. 41 2301
[15] Orlowski A, Paul H and Kastelewicz G 1995 Phys. Rev. A 52 162
[16] Obada A S F and Abdel-Khalek S 2004 J. Phys. A: Math. Gen. 37 6573
[17] Abdel-Khalek S 2008 Physica A 387 779
[18] Barzanjeh S and Eleuch H 2010 Physica E 42 2091
[19] Fang M F, Zhou P and Swain S 2000 J. Mod. Opt. 47 1043
[20] Zhou Q C and Zhu S N 2005 Chin. Phys. 14 0336
[21] Kennard E H 1927 Z. Phys. 44 326
[22] Abdel-Khalek S 2009 Phys. Scr. 80 045302
[23] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[24] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|