Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120304    DOI: 10.1088/0256-307X/28/12/120304
GENERAL |
Manipulating Quantum State in Superconducting Dressed-State Systems
ZHANG Feng-Yang, PEI Pei, LI Chong**, SONG He-Shan**
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
Cite this article:   
ZHANG Feng-Yang, PEI Pei, LI Chong et al  2011 Chin. Phys. Lett. 28 120304
Download: PDF(514KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct a novel Λ-type system via the dressed states formed by the coupling between a superconducting qubit and a transmission line resonator (TLR). Compared with the conventional three-level structure, our model averts the decay of excited states. We choose the two lowest energy dressed states as the logical states. The single qubit quantum gate can be realized by the adiabatic passage and three-step operation method, respectively. Based on realistic parameters, the feasibility of the adiabatic passage method is discussed. Also, we calculate the fidelity (0.9996) of realizing the single qubit gate with the three-step operation method.
Keywords: 03.67.Lx      85.25.Dq     
Received: 09 June 2011      Published: 29 November 2011
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120304       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Feng-Yang
PEI Pei
LI Chong
SONG He-Shan
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[2] Grover L K 1997 Phys. Rev. Lett. 79 325
[3] Shor P W 1994 in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Los Alamitos, CA: IEEE Computer Society) p 124
[4] You L 2001 Phys. Rev. A 64 012302
[5] Ralph T C et al 2002 Phys. Rev. A 65 062324
[6] Zou X, Pahlke K and Mathis W 2002 Phys. Rev. A 65 064305
[7] Wei L F, Liu Y X and Nori F 2006 Phys. Rev. Lett. 96 246803
[8] Neumann P et al 2008 Science 320 1326
[9] Wang Y D, Chesi S, Loss D and Bruder C 2010 Phys. Rev. B 81 104524
[10] Liu Y X, Sun C P and Nori F 2006 Phys. Rev. A 74 052321
[11] You J Q and Nori F 2003 Phys. Rev. B 68 064509
[12] Sun C P et al 2006 Phys. Rev. A 73 022318
[13] Martinis J M, Nam S and Aumentado J 2002 Phys. Rev. Lett. 89 117901
[14] Yu Y et al 2002 Science 296 889
[15] Pashkin Y A and Yamamoto T 2003 Nature 421 823
[16] Berkley A J et al 2003 Science 300 1548
[17] Blais A, Maassen van den Brink A and Zagoskin A M 2003 Phys. Rev. Lett. 90 127901
[18] Wang H et al 2004 Phys. Rev. Lett. 101 240401
[19] Amin M H S, Smirnov A Y and Maassen van den Brink A 2003 Phys. Rev. B 67 100508
[20] Yang C P and Han S 2004 Phys. Lett. A 321 273
[21] Yang C P and Han S 2006 Phys. Rev. A 74 044302
[22] Blais A et al 2004 Phys. Rev. A 69 062320
[23] Majer J et al 2007 Nature 449 443
[24] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[25] Ian H, Liu Y X and Nori F 2010 Phys. Rev. A 81 063823
[26] Kis Z and Renzoni F 2002 Phys. Rev. A 65 032318
[27] DiCarlo L et al 2009 Nature 460 240
[28] Paauw F G et al 2009 Phys. Rev. Lett. 102 090501
[29] Zhu X, Kemp A, Saito S and Semba K 2010 Appl. Phys. Lett. 97 102503
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 120304
[2] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 120304
[3] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 120304
[4] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 120304
[5] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 120304
[6] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 120304
[7] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 120304
[8] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 120304
[9] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 120304
[10] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 120304
[11] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 120304
[12] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 120304
[13] ZHANG Shu-Lin, LIU Yang-Bo, LIU Ming, WANG Yong-Liang, KONG Xiang-Yan, XIE Xiao-Ming** . A Room-Temperature Pre-calibration Procedure for Gradiometer Sifting[J]. Chin. Phys. Lett., 2011, 28(3): 120304
[14] ZOU Wei-Ping, ZHANG Gang, XUE Zheng-Yuan** . Arbitrary and Fast Quantum Gate with Semiconductor Double-Dot Molecules on a Chip[J]. Chin. Phys. Lett., 2011, 28(12): 120304
[15] XUE Peng . Quantum Memory via Wigner Crystals of Polar Molecules[J]. Chin. Phys. Lett., 2011, 28(12): 120304
Viewed
Full text


Abstract