Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 118401    DOI: 10.1088/0256-307X/28/11/118401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Partially Loaded Cavity Analysis by Using the 2-D FDTD Method
YAO Bin1,2, ZHENG Qin-Hong1,2**, PENG Jin-Hui3, ZHONG Ru-Neng2, XIANG Tai2, XU Wan-Song2
1College of Physical Science and Technology, Yunnan University, Kunming 650092
2School of Physics and Electronic Information, Yunnan Normal University, Kunming 650092
3Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093
Cite this article:   
YAO Bin, ZHENG Qin-Hong, PENG Jin-Hui et al  2011 Chin. Phys. Lett. 28 118401
Download: PDF(500KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A compact two-dimensional (2-D) finite-difference time-domain (FDTD) method is proposed to calculate the resonant frequencies and quality factors of a partially loaded cavity that is uniform in the z−direction and has an arbitrary cross section in the xy plane. With the description of z dependence by kz , the three-dimensional (3-D) problem can be transformed into a 2-D problem. Therefore, less memory and CPU time are required as compared to the conventional 3-D FDTD method. Three representative examples, a half-loaded rectangular cavity, an inhomogeneous cylindrical cavity and a cubic cavity loaded with dielectric post, are presented to validate the utility and efficiency of the proposed method.
Keywords: 84.40.-x      03.50.De      41.20.-q     
Received: 24 June 2011      Published: 30 October 2011
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  41.20.-q (Applied classical electromagnetism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/118401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/118401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAO Bin
ZHENG Qin-Hong
PENG Jin-Hui
ZHONG Ru-Neng
XIANG Tai
XU Wan-Song
[1] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[2] Li J, Guo L X and ZENG H 2009 Chin. Phys. Lett. 26 034101
[3] Zhu S L and Zhou W 2010 Chin. Phys. Lett. 27 067801
[4] Bi Z, Shen Y, Wu K and Litva J 1992 IEEE Trans. Microwave Theory Technol. 40 1611
[5] Pereda J A, Vielva L A, Vegas A and Prieto A 1992 IEEE Microwave Guided Wave Lett. 2 431
[6] Dey S and Mittra R 1998 IEEE Microwave Guided Wave Lett. 8 415
[7] Guo W H, Li W J and Huang Y Z 2001 IEEE Microwave Wireless Compon. Lett. 11 223
[8] Zhang Y J, Zheng W H, Xing M X, Ren G, Wang H L and Chen L H 2008 Opt. Commun. 281 2774
[9] Xiao S, Vahldieck R and Jin H 1992 IEEE Microwave Guided Wave Lett. 2 165
[10] Xu F and Wu K 2008 IEEE Trans. Antennas Propag. 56 501
[11] Lu Q Y, Guo W H, Bryne D C and Donegan J F 2009 Electron. Lett. 45 700
[12] Lu Q Y, Guo W H, Byrne D C and Donegan J F 2010 J. Lightwave Technol. 28 1638
[13] Xiao S and Vahldieck R 1993 IEEE Microwave Guided Wave Lett. 3 127
[14] Jung K Y, Ju S and Teixeira F L 2011 IEEE Microwave Wireless Compon. Lett. 21 179
[15] Zhao A P, Juntunen J and Raisanen A V 1997 IEEE MTT-S International Microwave Symposium Digest (Denver, CO, USA 08–13 June 1997) 1 83
[16] Zheng F H, Chen Z Z and Zhang J Z 2000 IEEE Transition Microwave Theory Technology 48 1550
[17] Lech R and Mazur J 2007 IEEE Transition Microwave Theory Technology 55 2115
Related articles from Frontiers Journals
[1] ZHANG Jun-Feng, LI De-Ren, CHEN Zheng, LU Zhi-Chao, ZHOU Shao-Xiong. Noise Suppression Effect of Composites Containing Glass-Covered Amorphous CoFeSiBCr Wires[J]. Chin. Phys. Lett., 2012, 29(6): 118401
[2] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 118401
[3] PAN Wei-Tao, LIU Song-Hua, QIU Zhi-Liang. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media[J]. Chin. Phys. Lett., 2012, 29(3): 118401
[4] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 118401
[5] SUN Qi-Zhi, FANG Dong-Fan**, LIU Wei, LIU Zheng-Fen, CHI Yuan, DAI Wen-Feng, HAN Wen-Hui . Experiments on Broadband EMP Radiation with an Axial Mode Helix Antenna[J]. Chin. Phys. Lett., 2011, 28(9): 118401
[6] LIU Zong-Kai, ZHOU Ben-Mou**, LIU Hui-Xing, LIU Zhi-Gang, JI Yan-Liang . Direct Force Control of a Rudder with the Action of a Coplanar Waveguide Product Microwave[J]. Chin. Phys. Lett., 2011, 28(9): 118401
[7] WANG Rui**, GUO Li-Xin, WANG An-Qi, WU Zhen-Sen . Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film[J]. Chin. Phys. Lett., 2011, 28(3): 118401
[8] LI Jie**, GUO Li-Xin, HE Qiong, WEI Bing . Electromagnetic Scattering from Randomly Rough Surfaces with Hybrid FEM/BIE[J]. Chin. Phys. Lett., 2011, 28(10): 118401
[9] ZHANG Yu, ZHANG Xin-Liang, CHEN Guo-Jie, XU En-Ming, HUANG De-Xiu. A Microwave Photonic Notch Filter Using a Microfiber Ring Resonator[J]. Chin. Phys. Lett., 2010, 27(7): 118401
[10] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 118401
[11] WANG Yun-Hua, ZHANG Yan-Min, GUO Li-Xin . Doppler Shifts of Backscattering Fields from One Dimensional Linear and Nonlinear Oceanic Surface by SSA-II[J]. Chin. Phys. Lett., 2010, 27(10): 118401
[12] HUANG Ming, ZHOU Yue-Qun, SHEN Ting-Gen. Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae[J]. Chin. Phys. Lett., 2010, 27(1): 118401
[13] ZHANG Min, LUO Wei, LIU Jiang-Tao, BAI Lu, ZHOU Ping. Method of Fundamental Solution for Composite Electromagnetic Scattering from Two-Dimensional Object Located on a Rough Surface[J]. Chin. Phys. Lett., 2010, 27(1): 118401
[14] XU Wei, XIN Xiang-Jun, ZHAO Tong-Gang, LING Jing, YU Chong-Xiu. Generation of Carrier and Odd Sidebands Suppressed Optical MM-Wave with Signal Only on One Sideband Using an External Integrated Mach-Zehnder Modulator[J]. Chin. Phys. Lett., 2009, 26(12): 118401
[15] LUO Wei, ZHANG Min, ZHOU Ping, YIN Hong-Cheng. Composite Scattering from the Electrically Very Large Ship-Sea Model Using the Hybrid High-Frequency Method[J]. Chin. Phys. Lett., 2009, 26(11): 118401
Viewed
Full text


Abstract