CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
The Preparation and Characteristics of InxGa1−xN (0.06≤x≤0.58) Films Deposited by ECR-PEMOCVD |
LIU Xing-Long1,2, QIN Fu-Wen1,2**, BIAN Ji-Ming1, ZHANG Dong1,2, CHEN Wei-Ji1,2, ZHOU Zhi-Feng1,2, ZHI An-Bo1,2, YU Bo1,2, WU Ai-Min2, JIANG Xin2,3
|
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
2Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024
3Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen, Germany
|
|
Cite this article: |
LIU Xing-Long, QIN Fu-Wen, BIAN Ji-Ming et al 2011 Chin. Phys. Lett. 28 108104 |
|
|
Abstract We investigate the structural property and surface morphology of InxGa1−xN films for In compositions ranging from 0.06 to 0.58, which are deposited by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The results of x-ray diffraction (XRD) in InGaN films confirm that they have excellent c−axis orientation. The In content in the InGaN epilayers is checked by electron probe microanalysis (EPMA), which reveals that In fractions determined by XRD are in good agreement with the EPMA results. Atomic force microscopy measurements reveal that the grown films have a surface roughness that varies between 4.16 and 8.14 nm. The results suggest that it is possible to deposit high-c-axis-orientation InGaN films with different In contents.
|
Keywords:
81.15.Gh
61.05.Cp
61.05.Jh
68.55.Nq
|
|
Received: 12 May 2011
Published: 28 September 2011
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
61.05.cp
|
(X-ray diffraction)
|
|
61.05.jh
|
(Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))
|
|
68.55.Nq
|
(Composition and phase identification)
|
|
|
|
|
[1] Nakamura S and Fasol G 1997 The Blue Laser Diode (Berlin: Springer) pp 201–260
[2] Wu J and Walukiewicz W et al 2002 Appl. Phys. Lett. 80 4741
[3] Wu J and Walukiewicz W et al 2002 Appl. Phys. Lett. 80 3967
[4] Davydov V Y and Klochikhin A A et al 2002 Phys. Status Solidi B 229 R1
[5] Wu J and Walukiewicz W et al 2003 J. Appl. Phys. 94 6477
[6] Waki I and Cohen D et al 2007 Appl. Phys. Lett. 91 093519
[7] Ho I and Stringfellow G B 1996 Appl. Phys. Lett. 69 2701
[8] El-Masry N A and Piner E L et al 1998 Appl. Phys. Lett. 72 40
[9] Singh R and Doppalapudi D et al 1997 Appl. Phys. Lett. 70 1089
[10] Krost A and Blasing J et al 2000 Appl. Phys. Lett. 76 1395
[11] Ruterana P and Nouet G et al 1998 Appl. Phys. Lett. 72 1742
[12] Ruterana P and Deniel F 1999 Mater. Sci. Eng. B 59 186
[13] Gokarna A and Gauthier-Brun A et al 2010 Appl. Phys. Lett. 96 191909
[14] Shan W and Walukiewicz W et al 1998 J. Appl. Phys. 84 4452
[15] Hori M and Kano K et al 2002 Phys. Status Solidi B 234 750
[16] Xu Y and Gu B et al 2004 J. Vac. Sci. Technol. A 22 302
[17] Pantha B N and Li J et al 2008 Appl. Phys. Lett. 93 182107
[18] Matsuoka T and Yoshimoto N et al 1992 J. Electron. Mater. 21 157
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|