THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with ℤ2n Grading |
KE San-Min1,2**, LI Xin-Ying1, WANG Chun3, YUE Rui-Hong4
|
1College of Science, Chang'an University, Xi'an 710064
2Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064
3College of Science, Xi'an Shiyou University, Xi'an 710065
4Faculty of Science, Ningbo University, Ningbo 315211
|
|
Cite this article: |
KE San-Min, LI Xin-Ying, WANG Chun et al 2011 Chin. Phys. Lett. 28 101101 |
|
|
Abstract The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with ℤ2n grading is derived using a first−order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n=2, our results coincide with the results given by Magro for the pure spinor description of AdS5×S5 string theory (when the ghost terms are omitted).
|
Keywords:
11.30.Na
02.30.Ik
|
|
Received: 13 June 2011
Published: 28 September 2011
|
|
PACS: |
11.30.Na
|
(Nonlinear and dynamical symmetries (spectrum-generating symmetries))
|
|
02.30.Ik
|
(Integrable systems)
|
|
|
|
|
[1] Bena I, Polchinski J and Roiban R 2004 Phys. Rev. D 69 046002
[2] Metsaev R R and Tseytlin A A 1998 Nucl. Phys. B 533 109
Roiban R and Siegel W 2000 J. High Energy Phys. 0011 024
[3] Berkovits N, Bershadsky M, Hauer T, Zhukov S and Zwiebach B 2000 Nucl. Phys. B 567 61
[4] Rahmfeld J and Rajaraman A 1999 Phys. Rev. D 60 064014
[5] Park J and Rey S J 1999 J. High Energy Phys. 9901 001
[6] Zhou J G 1999 Nucl. Phys. B 559 92
[7] Chen B, He Y L, Zhang P and Song X C 2005 Phys. Rev. D 71 086007
[8] Adam I, Dekel A, Mazzucato L and Oz Y 2007 J. High Energy Phys. 0706 085
[9] Arutyunov G and Frolov S 2008 J. High Energy Phys. 0809 129
[10] Vallilo B C 2004 J. High Energy Phys. 0403 037
[11] Bianchi M and Klǔso J 2006 J. High Energy Phys. 0608 030
[12] Berkovits N 2005 J. High Energy Phys. 0502 060
[13] Berkovits N 2005 J. High Energy Phys. 0503 041
[14] Das A K, Maharana J, Melikyan A and Sato M 2004 J. High Energy Phys. 0412 055
[15] Das A K, Melikyan A and Sato M 2005 J. High Energy Phys. 0511 015
[16] Mikhailov A Preprint arXiv:hep-th/0609108
[17] Klǔso J 2007 J. High Energy Phys. 0709 100
[18] Aoyama S Preprint arXiv:0709.3911 [hep-th]
[19] Dorey N and Vicedo B 2007 J. High Energy Phys. 0703 045
[20] Klǔso J 2007 J. High Energy Phys. 0704 040
[21] Mikhailov A and Schäfer-Nameki S 2008 Nucl. Phys. B 802 1
[22] Magro M 2009 J. High Energy Phys. 0901 021
[23] Vicedo B Preprint arXiv:0910.0221 [hep-th]
[24] Vicedo B 2011 Lett. Math. Phys. 95 249
[25] Dekel A and Oz Y 2011 J. High Energy Phys. 1103 117
[26] Young C A S 2006 Phys. Lett. B 632 559
[27] Kagan D and Young C A S 2006 Nucl. Phys. B 745 109
[28] Klǔso J 2006 J. High Energy Phys. 0610 046
[29] Ke S M, Shi K J, Wang C and Wu S 2007 Chin. Phys. Lett. 24 3374
[30] Ke S M, Shi K J and Wang C 2008 Int. J. Mod. Phys. A 23 4219
[31] Ke S M, Yang W L, Wang C, Jiang K X and Shi K J 2011 J. Math. Phys. 52 083511
[32] Maillet J M 1985 Phys. Lett. B 162 137
[33] Maillet J M 1986 Nucl. Phys. B 269 54
[34] Maillet J M 1986 Phys. Lett. B 167 401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|