Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 101101    DOI: 10.1088/0256-307X/28/10/101101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with 2n Grading
KE San-Min1,2**, LI Xin-Ying1, WANG Chun3, YUE Rui-Hong4
1College of Science, Chang'an University, Xi'an 710064
2Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064
3College of Science, Xi'an Shiyou University, Xi'an 710065
4Faculty of Science, Ningbo University, Ningbo 315211
Cite this article:   
KE San-Min, LI Xin-Ying, WANG Chun et al  2011 Chin. Phys. Lett. 28 101101
Download: PDF(509KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with 2n grading is derived using a first−order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n=2, our results coincide with the results given by Magro for the pure spinor description of AdS5×S5 string theory (when the ghost terms are omitted).
Keywords: 11.30.Na      02.30.Ik     
Received: 13 June 2011      Published: 28 September 2011
PACS:  11.30.Na (Nonlinear and dynamical symmetries (spectrum-generating symmetries))  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/101101       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/101101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KE San-Min
LI Xin-Ying
WANG Chun
YUE Rui-Hong
[1] Bena I, Polchinski J and Roiban R 2004 Phys. Rev. D 69 046002
[2] Metsaev R R and Tseytlin A A 1998 Nucl. Phys. B 533 109
Roiban R and Siegel W 2000 J. High Energy Phys. 0011 024
[3] Berkovits N, Bershadsky M, Hauer T, Zhukov S and Zwiebach B 2000 Nucl. Phys. B 567 61
[4] Rahmfeld J and Rajaraman A 1999 Phys. Rev. D 60 064014
[5] Park J and Rey S J 1999 J. High Energy Phys. 9901 001
[6] Zhou J G 1999 Nucl. Phys. B 559 92
[7] Chen B, He Y L, Zhang P and Song X C 2005 Phys. Rev. D 71 086007
[8] Adam I, Dekel A, Mazzucato L and Oz Y 2007 J. High Energy Phys. 0706 085
[9] Arutyunov G and Frolov S 2008 J. High Energy Phys. 0809 129
[10] Vallilo B C 2004 J. High Energy Phys. 0403 037
[11] Bianchi M and Klǔso J 2006 J. High Energy Phys. 0608 030
[12] Berkovits N 2005 J. High Energy Phys. 0502 060
[13] Berkovits N 2005 J. High Energy Phys. 0503 041
[14] Das A K, Maharana J, Melikyan A and Sato M 2004 J. High Energy Phys. 0412 055
[15] Das A K, Melikyan A and Sato M 2005 J. High Energy Phys. 0511 015
[16] Mikhailov A Preprint arXiv:hep-th/0609108
[17] Klǔso J 2007 J. High Energy Phys. 0709 100
[18] Aoyama S Preprint arXiv:0709.3911 [hep-th]
[19] Dorey N and Vicedo B 2007 J. High Energy Phys. 0703 045
[20] Klǔso J 2007 J. High Energy Phys. 0704 040
[21] Mikhailov A and Schäfer-Nameki S 2008 Nucl. Phys. B 802 1
[22] Magro M 2009 J. High Energy Phys. 0901 021
[23] Vicedo B Preprint arXiv:0910.0221 [hep-th]
[24] Vicedo B 2011 Lett. Math. Phys. 95 249
[25] Dekel A and Oz Y 2011 J. High Energy Phys. 1103 117
[26] Young C A S 2006 Phys. Lett. B 632 559
[27] Kagan D and Young C A S 2006 Nucl. Phys. B 745 109
[28] Klǔso J 2006 J. High Energy Phys. 0610 046
[29] Ke S M, Shi K J, Wang C and Wu S 2007 Chin. Phys. Lett. 24 3374
[30] Ke S M, Shi K J and Wang C 2008 Int. J. Mod. Phys. A 23 4219
[31] Ke S M, Yang W L, Wang C, Jiang K X and Shi K J 2011 J. Math. Phys. 52 083511
[32] Maillet J M 1985 Phys. Lett. B 162 137
[33] Maillet J M 1986 Nucl. Phys. B 269 54
[34] Maillet J M 1986 Phys. Lett. B 167 401
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 101101
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 101101
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 101101
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 101101
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 101101
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 101101
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 101101
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 101101
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 101101
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 101101
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 101101
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 101101
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 101101
[14] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 101101
[15] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 101101
Viewed
Full text


Abstract