Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100502    DOI: 10.1088/0256-307X/28/10/100502
GENERAL |
A Neurodynamical Model for Selective Visual Attention
QU Jing-Yi1**, WANG Ru-Bin1, ZHANG Yuan 2, DU Ying1
1Institute for Cognitive Neurodynamics, School of Information Science and Engineering, School of Science, East China University of Science and Technology, Shanghai 200237
2School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
QU Jing-Yi, WANG Ru-Bin, ZHANG Yuan et al  2011 Chin. Phys. Lett. 28 100502
Download: PDF(498KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A neurodynamical model for selective visual attention considering orientation preference is proposed. Since orientation preference is one of the most important properties of neurons in the primary visual cortex, it should be fully considered besides external stimuli intensity. By tuning the parameter of orientation preference, the regimes of synchronous dynamics associated with the development of the attention focus are studied. The attention focus is represented by those peripheral neurons that generate spikes synchronously with the central neuron while the activity of other peripheral neurons is suppressed. Such dynamics correspond to the partial synchronization mode. Simulation results show that the model can sequentially select objects with different orientation preferences and has a reliable shift of attention from one object to another, which are consistent with the experimental results that neurons with different orientation preferences are laid out in pinwheel patterns.
Keywords: 05.45.-a      05.45.Tp     
Received: 11 January 2011      Published: 28 September 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100502       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QU Jing-Yi
WANG Ru-Bin
ZHANG Yuan
DU Ying
[1] Borisyuk R, Kazanovich Y, Chik D, Tikhanoff V and Cangelosi A 2009 Neural Networks 22 707
[2] Niebur E and Koch C 1994 J. Comput. Neurosci. 1 141
[3] Corchs S and Deco G 2001 Neural Networks 14 981
[4] Chen K and Wang D L 2002 Neural Networks 15 423
[5] Tiesinga P H E 2005 Neural Comput. 17 2421
[6] Chik D, Borisyuk R and Kazanovich Y 2009 Neural Networks 22 890
[7] Allman L, Miezin F and McGuinness E 1985 Annu. Rev. Neurosci. 8 407
[8] Sillito A M, Grieve K L, Jones H E, Cudeiro J and Davis J 1995 Nature 378 492
[9] Bonhoeffer T and Grinvald A 1991 Nature 353 429
[10] Tao L, Shelley M, McLaughli D and Shapley R 2004 Proc. Natl. Acad. Sci. 101 366
[11] Tao L, Cai D, McLaughlin D, Shelley M and Shapley R 2006 Proc. Natl. Acad. Sci. 103 12911
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 100502
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 100502
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100502
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 100502
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 100502
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 100502
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100502
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 100502
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 100502
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 100502
[11] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 100502
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 100502
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 100502
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100502
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 100502
Viewed
Full text


Abstract