Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100501    DOI: 10.1088/0256-307X/28/10/100501
GENERAL |
Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network
TANG Jun**, QU Li-Cheng, LUO Jin-Ming
College of Science, China University of Mining and Technology, Xuzhou 221000
Cite this article:   
TANG Jun, QU Li-Cheng, LUO Jin-Ming 2011 Chin. Phys. Lett. 28 100501
Download: PDF(1090KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In a diverse and delayed small-world neuronal network, we have identified the oscillatory-like synchronization transition between anti-phase and complete synchronization [Phys. Rev. E 83 (2011) 046207]. Here we study the influence of the network topology and noise on the synchronization transition. The robustness of this transition is investigated. The results show that: (i) the synchronization transition is robust to the neuron number N in the network; (ii) only when the coupled neighbor number k is in the region [4,10], does the synchronization transition exist; (iii) to some extent, the synchronization is destroyed by noise and the oscillatory−like synchronization transition exists for relatively weak noise (D<0.003).
Keywords: 05.45.-a      05.40.-a      89.75.Kd     
Received: 02 June 2011      Published: 28 September 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  89.75.Kd (Patterns)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Jun
QU Li-Cheng
LUO Jin-Ming
[1] Fries P, Nikoli D and Singer W 2007 Trends. Neurosci. 30 309
[2] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization (Cambridge: Cambridge University)
[3] Wang Q, Perc M, Duan Z and Chen G 2009 Phys. Rev. E 80 026206
[4] Wang Q, Perc M, Duan Z and Chen G 2008 Phys. Lett. A 372 5681
[5] Wang Q, Chen G and Perc M 2011 PLoS Comput. Biol. 6 e15851
[6] Yi M and Yang L 2010 Phys. Rev. E 81 061924
[7] Wu D, Zhu S and Luo X 2011 Physica A 390 1835
[8] Hao Y, Gong Y and Lin X 2011 Neurocomputing 74 1748
[9] Gong Y, Xie Y, Lin X, Hao Y and Ma X 2010 Chaos, Solitons & Fractals 43 96
[10] Wang Y, Chik D T W and Wang Z D 2000 Phys. Rev. E 61 740
[11] Zhou C and Kurths J 2003 Chaos 13 401
[12] Zhou C, Kurths J and Hu B 2001 Phys. Rev. Lett. 87 098101
[13] Wu D, Zhu S and Luo X 2009 Phys. Rev. E 79 051104
[14] Luccioli S and Politi A 2010 Phys. Rev. Lett. 105 158104
[15] Glatt E, Gassel M and Kaiser F 2007 Phys. Rev. E 75 026206
[16] Winfree A T 1967 J. Theor. Biol. 16 15
[17] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin: Springer)
[18] Tang J, Ma J, Yi M, Xia H and Yang X 2011 Phys. Rev. E 83 046207
[19] Li Q and Gao Y, 2007 Biophys. Chem. 130 41
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 100501
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 100501
[14] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 100501
[15] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 100501
Viewed
Full text


Abstract