Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100403    DOI: 10.1088/0256-307X/28/10/100403
GENERAL |
Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole
WEI Yi-Huan**, CHU Zhong-Hui
Department of Physics, Bohai University, Jinzhou 121000
Cite this article:   
WEI Yi-Huan, CHU Zhong-Hui 2011 Chin. Phys. Lett. 28 100403
Download: PDF(406KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The first law of thermodynamics for the three horizons of Reissner–Nordström quintessence (RNQ) spacetime is obtained. For a general process of RNQ spacetime, the expressions for the radius changes of the three horizons are derived. When only mass changes, the heat fluxes through the three horizons are equivalent and no heat is left in the black hole region. Finally, a further discussion on the thermal properties of an RNQ black hole is given.
Keywords: 04.70.Dy      04.62.+v     
Received: 29 December 2010      Published: 28 September 2011
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.62.+v (Quantum fields in curved spacetime)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100403       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Yi-Huan
CHU Zhong-Hui
[1] Hawking S W 1975 Commun Math. Phys. 43 199
[2] Bekenstein J D 1973 Phys. Rev. D 7 2333
Bekenstein J D 1974 Phys. Rev. D 9 3292
[3] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161
[4] Smarr L 1973 Phys. Rev. Lett. 30 71
[5] Hayward S A, Mukohyana S and Ashworth M C 1999 Phys. Lett. A 256 347
[6] Hayward S A 1998 Class. Quant. Grav. 15 3147
[7] Kothawala D, Sarkar S and Padmanabhan T 2007 Phys. Lett. B 652 338
[8] Paranjape A, Sarkar S and Padmanabhan T 2006 Phys. Rev. D 74 104015
[9] Jacobson T 1995 Phys. Rev. Lett. 75 1260
[10] Siddiqui A A, Riaz S M J and Akbar M 2011 Chin. Phys. Lett. 28 070403
[11] Kiselev V V 2003 Class. Quant. Grav. 20 1187
[12] Chen J H and Wang Y J 2007 Chin. Phys. Lett. 24 3063
[13] Ma C R, Gui Y X and Wang F J 2007 Chin. Phys. Lett. 24 3286
[14] Xi P, Ao X C and Li X Z 2010 Astrophys. Space Sci. 330 273
[15] Xi P 2009 Astrophys. Space Sci. 321 47
[16] Zhang Y and Gui Y X 2006 Class. Quant. Grav. 23 6141
[17] Zhang Y, Wang C Y, Gui Y X, Wang F J and Yu F 2009 Chin. Phys. Lett. 26 030401
[18] Zhang Y, Gui Y X, Yu F and Li F L 2007 Gen. Rel. Grav. 39 1003
[19] Saleh M, Thomas B B and Kofane T C 2009 Chin. Phys. Lett. 26 109802
[20] Chen S, Jing J 2005 Class. Quant. Grav. 22 4651
[21] Chen S B, Wang B and Su R K 2008 Phys. Rev. D 77 124011
[22] Wei Y H 2009 Phys. Lett. B 672 98
[23] Park M I 2007 Phys. Lett. B 647 472
[24] Park M I 2008 Phys. Lett. B 663 259
[25] Misner C M and Sharp D H 1964 Phys. Rev. 136 B571
[26] Mirshekari S and Abbassi A M 2009 Mod. Phys. Lett. A 24 747
[27] Wei Y H 2008 Chin. Phys. Lett. 25 2782
[28] Wei Y H 2010 Chin. Phys. B 19 090404
[29] Wu S Q 2005 Phys. Lett. B 608 251
[30] Wei Y H 2010 Acta Phys. Sin. 59 4385 (in Chinese)
[31] Wei Y H 2009 Chin. Phys. B 18 821
[32] Cveti M, Nojiri S and Odintsov S D 2002 Nucl. Phys. B 628 295
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 100403
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 100403
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 100403
[4] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 100403
[5] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 100403
[6] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 100403
[7] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 100403
[8] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 100403
[9] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 100403
[10] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 100403
[11] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 100403
[12] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 100403
[13] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 100403
[14] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 100403
[15] LI Cheng-Gai, YU Hong-Wei. Radiative Energy Shifts of an Atom Coupled to the Derivative of a Scalar Field near a Reflecting Boundary[J]. Chin. Phys. Lett., 2009, 26(5): 100403
Viewed
Full text


Abstract