Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 013201    DOI: 10.1088/0256-307X/28/1/013201
ATOMIC AND MOLECULAR PHYSICS |
Frequency Measurement of the Electric Quadrupole Transition in a Single Laser-Cooled 40Ca+
LIU Qu1,2,3, HUANG Yao1,2,3, CAO Jian1,2,3, OU Bao-Quan1,2,4, GUO Bin1,2**, GUAN Hua1,2, HUANG Xue-Ren1,2***, GAO Ke-Lin1,2***
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics (WIPM), Chinese Academy of Sciences, Wuhan 430071
2Centers for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
3Graduate School of the Chinese Academy of Sciences, Beijing 100049
4Department of Physics, Science College, National University of Defense Technology, Changsha 410073
Cite this article:   
LIU Qu, HUANG Yao, CAO Jian et al  2011 Chin. Phys. Lett. 28 013201
Download: PDF(601KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The optical frequency of the 4s2S1/2–3d2D5/2 transition in a single trapped and laser−cooled 40Ca+ ion is measured with an optical frequency comb system referenced to a hydrogen maser. A 729−nm laser can be locked to the clock transition about ten hours and the Allan deviation is better than 2×10-14/1000s.
Keywords: 32.80.Pj      43.58.Hp     
Received: 09 September 2010      Published: 23 December 2010
PACS:  32.80.Pj  
  43.58.Hp (Tuning forks, frequency standards; frequency measuring and recording instruments; time standards and chronographs)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/013201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/013201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Qu
HUANG Yao
CAO Jian
OU Bao-Quan
GUO Bin
GUAN Hua
HUANG Xue-Ren
GAO Ke-Lin
[1] Dehmelt H 1982 IEEE Trans. Instrum. Meas. 31 83
[2] Margolis H S et al 2004 Science 306 1355
[3] Schneider T, Peik E and Tamm C 2005 Phys. Rev. Lett. 94 230801
[4] Rosenband T et al 2008 Science 319 1808
[5] Chou C W et al 2010 Phys. Rev. Lett. 104 070802
[6] Chwalla M et al 2009 Phys. Rev. Lett. 102 023002
[7] Matsubara K et al 2008 Appl. Phys. Express 1 067011
[8] Shu H L et al 2005 Chin. Phys. Lett. 22 1641
[9] Shu H L et al 2007 Chin. Phys. Lett. 24 1217
[10] Guo B et al 2009 Front. Phys. Chin. 4 144
[11] Guan H et al 2007 Opt. Commum. 274 182
[12] Berkeland D J et al 1998 J. Appl. Phys. 83 5025
[13] Matsubara K et al 2005 Jpn. J. Appl. Phys. 44 229
[14] Drever R W P et al 1983 Appl. Phys. B 31 97
[15] Guan H et al 2011 Opt. Commun. 284 217
[16] Barwood G P et al 2004 Phys. Rev. Lett. 93 133001
[17] Roos C F et al 2006 Nature 443 316
[18] Madej A A et al 2004 Phys. Rev. A 70 012507
[19] Barwood G et al 2001 IEEE Trans. Instrum. Meas. 50 543
[20] Bernard J E et al 1999 Phys. Rev. Lett. 82 3228
Related articles from Frontiers Journals
[1] MA Yan**, LI Tong-Bao, WU Wen, XIAO Yi-Li, ZHANG Ping-Ping, GONG Wei-Gang . Laser-Focused Atomic Deposition for Nanascale Grating[J]. Chin. Phys. Lett., 2011, 28(7): 013201
[2] JIA You-Hua, ZHONG Biao, YIN Jian-Ping. Two Kinds of Cavity Geometry for Enhanced Laser Cooling of Solids[J]. Chin. Phys. Lett., 2010, 27(7): 013201
[3] CHEN Liang, , SHE Lei, LI Jiao-Mei, GAO Ke-Lin,. Kinetic Energy of Trapped Ions Cooled by Buffer Gas[J]. Chin. Phys. Lett., 2010, 27(6): 013201
[4] DAN Lin, , YAN Hui, , WANG Jin, ZHAN Ming-Sheng,. Chip-Based Square Wave Dynamic Micro Atom Trap[J]. Chin. Phys. Lett., 2010, 27(5): 013201
[5] ZHANG Wen-Tao, ZHU Bao-Hua, XIONG Xian-Ming . Analysis of Nanometer Structure for Chromium Atoms in Gauss Standing Laser Wave[J]. Chin. Phys. Lett., 2010, 27(12): 013201
[6] CHEN Xi, , YANG Guo-Qing, , WANG Jin, **, ZHAN Ming-Sheng,. Coherent Population Trapping-Ramsey Interference in Cold Atoms[J]. Chin. Phys. Lett., 2010, 27(11): 013201
[7] GUO Bin, , GUAN Hua, LIU Qu, , HUANG Yao, , HUANG Xue-Ren, GAO Ke-Lin,. Measurement of Secular Motion Frequency in Miniature Paul Trap to Ascertain the Stability Parameters[J]. Chin. Phys. Lett., 2010, 27(1): 013201
[8] ZHANG Wen-Tao, ZHU Bao-Hua. Simulation of Chromium Atom Deposition Pattern in a Gaussain Laser Standing Wave with Different Laser Power[J]. Chin. Phys. Lett., 2009, 26(7): 013201
[9] HAN Yan-Xu, LIU Yong-Hong, ZHANG Chun-Hong, LI Shu-Jing, WANG Hai. Realization of High Optical Density Rb Magneto-optical Trap[J]. Chin. Phys. Lett., 2009, 26(2): 013201
[10] ZHENG Xiao-Juan, FANG Mao-Fa, XU Hui,. A Simple Scheme for Two-Qubit Grover Search in Hot Trapped Ions[J]. Chin. Phys. Lett., 2009, 26(11): 013201
[11] YAN Hui, , YANG Guo-Qing, , WANG Jin, ZHAN Ming-Sheng,. Directly Trapping Atoms in a U-Shaped Magneto-Optical Trap Using a Mini Atom Chip[J]. Chin. Phys. Lett., 2008, 25(9): 013201
[12] FENG Zhi-Gang, ZHANG Lin-Jie, ZHAO Jian-Ming, LI Chang-Yong, LI An-Ling, JIA Suo-Tang. Measurement of Ionization Threshold of Ultracold Cesium Rydberg Atoms in Static Electric Field[J]. Chin. Phys. Lett., 2008, 25(7): 013201
[13] MA Hong-Yu, CHENG Hua-Dong, WANG Yu-Zhu, LIU Liang, METCALF Harold. Ultra-Slow Atomic Beam Generation by Velocity Selective Resonance[J]. Chin. Phys. Lett., 2008, 25(5): 013201
[14] YU De-Shui, CHEN Jing-Biao. Variational Approach for the Bose--Hubbard Model[J]. Chin. Phys. Lett., 2008, 25(5): 013201
[15] CHENG Guang-Ling, HU Xiang-Ming. Scalable Generation of Cluster State for Multiple Hot Trapped Ions[J]. Chin. Phys. Lett., 2008, 25(4): 013201
Viewed
Full text


Abstract