Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010501    DOI: 10.1088/0256-307X/28/1/010501
GENERAL |
Switched Synchronization with a Guaranteed Performance
Choon Ki Ahn
Department of Automotive Engineering, Seoul National University of Science & Technology, 172 Gongneung 2-dong, Nowon-gu, Seoul 139-743, Korea
Cite this article:   
Choon Ki Ahn 2011 Chin. Phys. Lett. 28 010501
Download: PDF(489KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new synchronization method is proposed for switched systems. Based on the Lyapunov stability theory and linear matrix inequality (LMI) formulation, an existence condition of the synchronization controller for switched systems is proposed such that the resulting synchronization error system is asymptotically stable with a guaranteed performance. It is also shown that the design of the desired controller is achieved by solving a set of LMIs, which can be facilitated efficiently by resorting to standard numerical algorithms. A numerical example with simulation results is provided to illustrate the effectiveness and performance of the developed approach.
Keywords: 05.45.-a     
Received: 07 May 2010      Published: 23 December 2010
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Choon Ki Ahn
[1] Chen G and Dong X 1998 From Chaos to Order (Singapore: World Scientific)
[2] Pecora L M and Carroll T L 1996 Phys. Rev. Lett. 64 821
[3] Wang C and Su J 2004 Chaos, Solitons and Fractals 20 967
[4] Ott E, Grebogi C and Yorke J 1990 Phys. Rev. Lett. 64 1196
[5] Liu Z and Chen S 1997 Phys. Rev. E 55 199
[6] Liu Z and Chen S 1997 Phys. Rev. E 55 6651
[7] Yang X and Chen G 2002 Chaos, Solitons and Fractals 13 1303
[8] Bai E and Lonngen K 1997 Phys. Rev. E 8 51
[9] Bai E and Lonngren K 2000 Chaos, Solitons and Fractals 11 1041
[10] Ahn C K 2010 Nonlinear Analysis: Hybrid Systems 4 16
[11] Ahn C K 2009 Mod. Phys. Lett. B 23 3531
[12] Ahn C K 2010 Chin. Phys. Lett. 27 010503
[13] Stoorvogel A 1992 The ℋ Control Problem: A State-Space Approach (Upper Saddle River: Prentice Hall)
[14] Hou Y, Liao T and Yan J 2007 Physica A 379 81
[15] Ahn C K 2009 Phys. Lett. A 373 1729
[16] Ahn C K 2010 Nonlinear Dynamics 59 319
[17] Lu J, Huang B and Wu X 2004 Chaos Solitons, and Fractals 22 229
[18] Huang H, Qu Y and Li H 2005 Phys. Lett. A 345 345
[19] Yuan K, Cao J and Li H 2006 IEEE Trans. Syst. Man Cybernet. B 36 1356
[20] Yu W, Cao J, and Yuan K 2008 Phys. Lett. A 372 4438
[21] Boyd S, Ghaoui L E, Feron E and Balakrishinan V 1994 Linear Matrix Inequalities in Systems and Control Theory (Philadelphia: SIAM)
[22] Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 LMI Control Toolbox (Natick: The Mathworks Inc.)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 010501
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 010501
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 010501
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 010501
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 010501
Viewed
Full text


Abstract