GENERAL |
|
|
|
|
Why Can We Copy Classical Information? |
SHEN Yao, HAO Liang, LONG Gui-Lu**
|
Key Laboratory for Atomic and Molecular Nanosciences, and Department of Physics, Tsinghua University, Beijing 100084 |
|
Cite this article: |
SHEN Yao, HAO Liang, LONG Gui-Lu 2011 Chin. Phys. Lett. 28 010306 |
|
|
Abstract It is pointed out that the noncloning theorem in quantum mechanics also holds for unknown state in linear classical physics. The apparent capability of copying of a classical state is essentially the capability of perfect measurement in classical physics. The difference in copying between quantum and classical physics is the difference in measurement between the two theories. A classical copying process is the combined action of measurement of an unknown state and the preparation of this state onto another system. Hence perfect measurability in classical physics enables the copying of a classical state.
|
Keywords:
03.67.Ac
03.65.Ta
42.50.Dv
|
|
Received: 26 November 2010
Published: 23 December 2010
|
|
PACS: |
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] Wootters W K and Zurek W H 1982 Nature 229 802
[2] Dieks D 1982 Phys. Lett. A 92 271
[3] Buzek V and Hillery M 1996 Phys. Rev. A 54 1844
[4] Buzek V, Braustein S L, Hillery M H and Bruß D 1996 Phys. Rev. A 56 3446
[5] Duan L M and Guo G C 1998 Phys. Lett. A 243 261
[6] Duan L M and Guo G C 1998 Phys. Rev. Lett. 80 4999
[7] Pati A and Braustein S L 2000 Nature 404 164
[8] Gao T, Yan F L, Wang Z X and Li Y C 2008 Front. Comput. Sci. China 2 179
[9] Josza R 2002 A Stronger No-cloning Theorem. arXiv:quant-ph/0204153
[10] Horodecki M, Horodecki R, Sen(De) A and Sen U 2003 No-deleting and No-cloning Principles as Consequences of Conservation of Quantum Information arXiv:quant-ph/0306044
[11] Feng Y, Zhang Z Y and Ying M S 2002 Phys. Rev. A 65 042324
[12] Ying M S 2002 Phys. Lett. A 299 107
[13] Ji Z F, Feng Y and Ying M S 2005 Phys. Rev. A 72 032324
[14] Cai Q Y 2004 Chin. Phys. Lett. 21 1189
[15] Shen Y, Hao L and Long G L 2010 Commun. Theor. Phys. 53 486
[16] Maruyama K and Knight P L 2003 Phys. Rev. A 67 032303
[17] Ma P C and Zhan Y B 2009 Commun. Theor. Phys. 51 57
[18] Fang M, Liu Y M, Liu J, Shi S H and Zhang Z J 2006 Commun. Theor. Phys. 46 849
[19] Gao T, Yan F L and Wang Z X 2005 Commun. Theor. Phys. 43 73
[20] Yang Z, Zhang W H, He J and Ye L 2008 Commun. Theor. Phys. 50 1096
[21] Zhang Q R 2008 Sci. Chin. G 51 813
[22] Scarani V, Iblisdir S and Gisin N 2005 Rev. Mod. Phys. 77 1225
[23] Cerf N J and Fiurasek J 2006 Prog. Opt. 49 455
[24] Long G L and Sun Y 2001 Phys. Rev. A 64 014303
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|