Chin. Phys. Lett.  2010, Vol. 27 Issue (7): 070307    DOI: 10.1088/0256-307X/27/7/070307
GENERAL |
Effective Mass Schrödinger Equation via Point Canonical Transformation

Altuğ; Arda1, Ramazan Sever2

1Department of Physics Education, Hacettepe University, Ankara 06800, Turkey 2Department of Physics, Middle East Technical University, Ankara 06531, Turkey
Cite this article:   
Altu&#, Arda et al  2010 Chin. Phys. Lett. 27 070307
Download: PDF(301KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Exact solutions of the effective radial Schrödinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions.

Keywords: 03.65.-w      03.65.Ge      12.39.Fd     
Received: 31 March 2010      Published: 28 June 2010
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  12.39.Fd  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/7/070307       OR      https://cpl.iphy.ac.cn/Y2010/V27/I7/070307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Altu&#
Arda
Ramazan Sever
[1] Gendenstein L 1983 JETP Lett. 38 356
[2] Alhaidari A D 2002 Phys. Rev. A 66 042116
[3] De R, Dutt R and Sukhatme U 1992 J. Phys. A 25 L843
[4] Dutt R et al 1995 J. Phys. A 28 L107
[5] Jia C S et al 2004 J. Phys. A 37 11275
[6] Alhaidari A D 2001 Phys. Rev. Lett. 87 210405
[7] Roy B and Roy P 2002 J. Phys. A 35 3961
[8] Dutra A S and Almeida C A S 2000 Phys. Lett. A 275 25
[9] Plastino A R et al 1999 Phys. Rev. A 60 4318
[10] Alhaidari A D 2003 Int. J. Theor. Phys. 42 2999
[11] Yu J and Dong S H 2004 Phys. Lett. A 325 194
[12] Jiang L, Yi L Z and Jia C S 2005 Phys. Lett. A 345 279
[13] Tezcan C and Sever R 2008 Int. J. Theor. Phys. 47 1471
[14] Serra L and Lipparini E 1997 Europhys. Lett. 40 667
[15] von Roos O 1983 Phys. Rev. B 27 7547
[16] von Roos O and Mavromatis H 1985 Phys. Rev. B 31 2254
[17] de Saavedra F A et al 1994 Phys. Rev. B 50 4248
[18] Barranco M, Pi M et al 1997 Phys. Rev. B 56 8997
[19] Kratzer A 1920 Z. Phys. 3 289
[20] Roy R J L et al 1970 J. Chem. Phys. 52 3869
[21] Maharana K, arXiv:math-ph/0401026
[22] Aygun M, Bayrak O and Boztosun I 2007 J. Phys. B: At. Mol. Opt. Phys. 40 5372
[23] Constantinescu F and Magyari E 1971 Problems in Quantum Mechanics (Oxford: Pergamon)
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 070307
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 070307
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 070307
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 070307
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 070307
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 070307
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 070307
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 070307
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 070307
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 070307
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 070307
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 070307
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 070307
[14] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 070307
[15] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 070307
Viewed
Full text


Abstract