GENERAL |
|
|
|
|
Effect of Local Magnetic Field in G Measurement with Time-of-Swing Method |
LI Qing1, LIU Lin-Xia2, TU Liang-Cheng1, SHAO Cheng-Gang1, LUO Jun1 |
1Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 2Department of Electronics and Communication Engineering, Henan Mechanical and Electrical Engineering College, Xinxiang 453002 |
|
Cite this article: |
LI Qing, LIU Lin-Xia, TU Liang-Cheng et al 2010 Chin. Phys. Lett. 27 070401 |
|
|
Abstract The effect of the local time-varying magnetic field in our G measurement with the time-of-swing method is studied by magnifying the magnetic field to cause a perceptible change in the pendulum's period. The experimental result shows that the coefficients of the change in the period to the magnetic field are 37(1) and 12(1) ms/gauss in the two horizontal directions respectively, which means that the systematic uncertainty due to the local magnetic field is less than 0.4 ppm in our G measurement.
|
Keywords:
04.80.Cc
06.20.Jr
|
|
Received: 25 January 2010
Published: 28 June 2010
|
|
PACS: |
04.80.Cc
|
(Experimental tests of gravitational theories)
|
|
06.20.Jr
|
(Determination of fundamental constants)
|
|
|
|
|
[1] Mohr P J and Taylor B N 2000 Rev. Mod. Phys. 72 351 [2] Mohr P J, Taylor B N and Newell D B 2008 Rev. Mod. Phys. 80 633 [3] Hu Z K, Guo J Q and Luo J 2005 Phys. Rev. D 71 127505 [4] Luo J et al 2009 Phys. Rev. Lett. 102 240801 [5] Hu Z K, Luo J and Hsu H 1999 Phys. Lett. A 264 112 [6] Hu Z K and Luo J 2000 Phys. Lett. A 268 255 [7] Hu Z K, Wang X L and Luo J 2001 Chin. Phys. Lett. 18 7 [8] Zhao L et al 2003 Chin. Phys. Lett. 20 1206 [9] Yang S Q et al 2009 Phys. Rev. D 80 122005 [10] Liu L X et al 2008 Chin. Phys. Lett. 25 4203 [11] Liu L X et al 2009 Chin. Phys. Lett. 26 010403 [12] Liu L X et al 2009 Chin. Phys. Lett. 26 090402 [13] Tu H B et al 2009 Chin. Phys. Lett. 26 040403 [14] Luo J et al 1999 Chin. Phys. Lett. 16 867 [15] Shao C G et al 2003 Rev. Sci. Instrum. 74 2849 [16] Tian Y L et al 2004 Rev. Sci. Instrum. 75 1971 [17] Jackson J D 1999 Classical Electrodynamics 3rd ed. (New York: Wiley) [18] Gundlach J H and Merkowitz s M 2000 Phys. Rev. Lett. 85 2869 [19] Karagioz O V and Izmailov V P 1996 Meas. Tech. 39 979 [20] Schlamminger S, Holzschuh E and Kundig W 2002 Phys. Rev. Lett. 89 161102 [21] Schlamminger S et al 2006 Phys. Rev. D 74 082001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|