CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Measurement of GaN/Ge(001) Heterojunction Valence Band Offset by X-Ray Photoelectron Spectroscopy |
GUO Yan, LIU Xiang-Lin, SONG Hua-Ping, YANG An-Li, ZHENG Gao-Lin, WEI Hong-Yuan, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 |
|
Cite this article: |
GUO Yan, LIU Xiang-Lin, SONG Hua-Ping et al 2010 Chin. Phys. Lett. 27 067302 |
|
|
Abstract X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13±0.19 eV, according to the relationship between the conduction band offset ΔEC and the valence band offset ΔEV: Δ EC=EgGaN-EgGe-Δ EV, and taking the room-temperature band-gaps as 3.4 and 0.67 eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6\pm 0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.
|
Keywords:
73.40.Kp
79.60.Jv
81.05.Ea
|
|
Received: 15 January 2010
Published: 25 May 2010
|
|
PACS: |
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
|
|
[1] Zhang Y, McAleese C, Xiu H, Humphreys C J, Lieten R R, Degroote B and Borghs B 2007 Appl. Phys. Lett. 91 092125 [2] Lieten R R, Degroote S, Leys M and Borghs G 2009 J. Cryst. Growth 311 1306-1310 [3] Lieten R R, Degroote S, Cheng K, Leys M, Kuijk M and Borghs G 2006 Appl. Phys. Lett. 89 252118 (2006) [4] Leong M, Doris B, Kedzierski J, Rim K and Yang M 2004 Science 306 2057-2060 [5] Brammertz G, Mols Y, Degroote S, Leys M, Steenbergen J V, Borghs G and Caymax M 2006 J. Cryst. Growth 297 204 [6] Maeda T, Yasuda T, Nishizawa M, Miyata N, Morita Y and Takagi S 2004 Appl. Phys. Lett. 85 3181 [7] Lieten R R, Degroote S, Kuijk M and Borghs G 2007 Appl. Phys. Lett. 91 222110 [8] Li Y, Lazzarini L, Giling L J and Salviati G 1994 J. Appl. Phys. 76 5748 [9] Scholz S, Bauer J, Leigiger G, Herrnberger H, Hirsch D and Gottschalch V 2006 Cryst. Res. Technol. 41 111 [10] Wang S J, Cai J W, Pan J S and Huan A C H 2006 Appl. Phys. Lett. 89 022105 [11] Kraut E A, Grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620 [12] Veal T D, King P D C, Hatfield S A, Bailey L R, McConville C F, Martel B, Moreno J C, Frayssinet E, Semond F and Zuniga-Perez J 2008 Appl. Phys. Lett. 93 202108 [13] Zhang R Q, Zhang P F, Kang T T, Fan H B, Liu X L, Yang S Y, Wei H Y, Zhu Q S and Wang Z G 2007 Appl. Phys. Lett. 91 162104 [14] King P D C, Veal T D, Payne D J, Bourlange A, Egdell R G and McConville C F 2008 Phys. Rev. Lett. 101 116808 [15] King P D C, Veal T D, Kendrick C E, Bailey L R, Durbin S M and McConville C F 2008 Phys. Rev. Lett. 78 033308 [16] Martin G, Botchkarev A, Rockett A and Morkoc H 1996 Appl. Phys. Lett. 68 2541 [17] Zhang R Q, Guo Y, Song H P, Liu X L, Yang S Y, Wei H Y, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 93 122111 [18] Zhang P F, Liu X L, Zhang R Q, Fan H B, Yang A L, Wei H Y, Jin P, Yang S Y, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 012104 [19] Yang A L, Song H P, Liu X L, Wei H Y, Guo Y, Zheng G L, Jiao C M, Yang S Y, Zhu Q S and Wang Z G 2009 Appl. Phys. Lett. 94 052101 [20] Wu C L, Lee H M, Kuo C T, Chen C H and Gwo S 2008 Appl. Phys. Lett. 92 162106 [21] Song H P, Yang A L, Wei H Y, Guo Y, Zhang B, Zheng G L, Yang S Y, Liu X L, Zhu Q S, Wang Z G, Yang T Y and Wang H H 2009 Appl. Phys. Lett. 94 222114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|