Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 067204    DOI: 10.1088/0256-307X/27/6/067204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Capacitance of Organic Schottky Diodes Based on Copper Phthalocyanine (CuPc)

LI Zhong-Liang, WU Zhao-Xin, JIAO Bo, MAO Gui-Lin, HOU Xun

Key Laboratory of Photonics Technology for Information (Shaanxi Province), and Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
LI Zhong-Liang, WU Zhao-Xin, JIAO Bo et al  2010 Chin. Phys. Lett. 27 067204
Download: PDF(446KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The capacitance of an organic Schottky diode based on copper phthalocyanine (CuPc) is investigated. Based on the organic small-signal equivalent model established, we calculate the reverse capacitance CMetal of the organic Schottky diode with different kinds of metal cathodes (Mg, Al, Au). It is found that the reverse capacitance of the organic Schottky diode shows behavior as C Mg >C Al >C Au at the same frequency, and according to our analysis, the reverse Schottky junction capacitance Cj is expected to have little effect on the reverse capacitance of the organic Schottky diode, and the space-charge limited current capacitance CS is considered to dominate the reverse capacitance, which limits the improvement of frequency characteristics of organic Schottky diodes.

Keywords: 72.80.Le      84.37.+q      85.30.De     
Received: 20 January 2010      Published: 25 May 2010
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/067204       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/067204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zhong-Liang
WU Zhao-Xin
JIAO Bo
MAO Gui-Lin
HOU Xun
[1] Myny K, Steudel S, Vicca P et al 2008 Appl. Phys. Lett. 93 9
[2] Baude P F, Ender D A, Haase M A et al 2003 Appl. Phys. Lett. 82 22
[3] Cantatore E, Geuns T C T, Gelinck G H et al 2006 Proceeding of the IEEE International Solid-State Circuit Conference (ISSCC) (San Francisco, CA 5-9 February 2006) p 84
[4] Gelinck G H, Huitema H E A, Van Veenendaal E et al 2004 Nature Mater. 3 2
[5] Someya T, Kato Y, Sekitani T et al 2005 Proc. Natl. Acad. Sci. U.S.A. 102 35
[6] Subramanian V, Frechet J M J, Chang P C et al 2005 Proc. IEEE 93 7
[7] Wang H, Li C H, Pan F, Wang H B and Yan D H 2009 Chin. Phys. Lett. 26 118501
[8] Cupta R K and Singh R A 2004 Mater. Sci. Semiconduct. Proc. 7 1
[9] Pal B N, Sun J, Jung B J et al 2008 Adv. Mater. 20 5
[10] Ma L, Ouyang J and Yang Y 2004 Appl. Phys. Lett. 84 4786
[11] Huang C Y, Lin S Y, Cheng S S et al 2007 J. Vacuum Sci. Technol. B: Microelectronics and Nanometer Structures 25 1
[12] Ai Y, Gowrisanker S, Jia H et al 2007 Appl. Phys. Lett. 90 26
[13] Anthopoulos T D and Shafai T S 2000 Phys. Status Solidi A 181 2
[14] Gupta R K and Singh R A 2005 J. Mater. Sci. Mater. Electron. 16 5
[15] Saxena V and Santhanam K S V 2003 Current Appl. Phys. 3 2
[16] Zhaoxin W, Liduo W, Haifeng W et al 2006 Phys. Rev. B 74 16
[17] Mahapatro A K and Ghosh S 2002 Appl. Phys. Lett. 80 25
[18] Campbell I H and Smith D L 1999 Appl. Phys. Lett. 74 4
[19] Rajesh K R, Varghese S and Menon C S 2007 J. Phys. Chem. Solids 68 4
[20] Neanmen D A 2003 Semiconductor Physics and Devices: Basic Principles (Beijing: Tsinghua University Press) p 327
Related articles from Frontiers Journals
[1] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 067204
[2] WANG Li-Guo**, ZHANG Huai-Wu, TANG Xiao-Li, LI Yuan-Xun, ZHONG Zhi-Yong. Charge Transport and Electrical Properties in Poly(3-hexylthiophene) Polymer Layers[J]. Chin. Phys. Lett., 2012, 29(1): 067204
[3] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 067204
[4] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 067204
[5] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 067204
[6] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 067204
[7] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 067204
[8] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 067204
[9] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 067204
[10] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 067204
[11] XU Xiao-Bo**, ZHANG He-Ming . An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 067204
[12] CHEN Bin**, YANG Yin-Tang, CHAI Chang-Chun, ZHANG Xian-Jun . Quantitatively Exploring the Effect of a Triangular Electrode on Performance Enhancement in a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector[J]. Chin. Phys. Lett., 2011, 28(6): 067204
[13] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 067204
[14] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 067204
[15] HU Sheng-Dong, **, ZHANG Ling, LUO Xiao-Rong, ZHANG Bo, LI Zhao-Ji, WU Li-Juan . Design of a 1200-V Thin-Silicon-Layer p-Channel SOI LDMOS Device[J]. Chin. Phys. Lett., 2011, 28(12): 067204
Viewed
Full text


Abstract