Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 064401    DOI: 10.1088/0256-307X/27/6/064401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media
A. M. Salem
Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
Cite this article:   
A. M. Salem 2010 Chin. Phys. Lett. 27 064401
Download: PDF(421KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An analysis is presented to investigate the effect of temperature-dependent viscosity on free convection flow along a vertical wedge adjacent to a porous medium in the presence of heat generation or absorption. The governing fundamental equations are transformed into the system of ordinary differential equations using scaling group of transformations and are solved numerically by using the fifth-order Rung-Kutta method with shooting technique for various values of the physical parameters. The effects of variable viscosity parameter on the velocity, temperature and concentration are discussed. Numerical results for the problem considered are given and illustrated graphically.

Keywords: 44.25.+f      44.30.+b      47.55.Mh     
Received: 04 December 2009      Published: 25 May 2010
PACS:  44.25.+f (Natural convection)  
  44.30.+b  
  47.55.Mh  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/064401       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/064401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. M. Salem
[1] Nield D and Bejan A 1999 Convection in Porous Media (New York: Springer)
[2] Pop I and Ingham D B 2001 Convective Heat Transfer (Oxford: Pergamon)
[3] Benenati R F and Brosilow C B 1962 AIChE J. 8 359
[4] Vafai K 1984 J. Fluid Mech. 147 233
[5] Vafai K et al 1985 J. Heat Transfer 107 642
[6] Chamkha A J 1997 Appl. Math. Model. 21 603
[7] Boutros Y Z et al 2006 Mechanica 41 681
[8] Salem A M 2006 Commun. Numer. Method Engin. 22 955
[9] Salem A M 2006 J. Korean Phys. Soc. 3 409
[10] Ling J X et al 1992 ASME J. Heat Transfer 114 1063
[11] Gary J et al 1982 J. Fluid Mech. 117 233
[12] Mehta K N and Sood S 1992 Int. J. Engin. Sci. 30 1083
[13] Soundalgekar V M et al 2004 Heat Mass Transfer 40 421
[14] Mukhopadhyay S, Layek G C and Samad S A 2005 Int. J. Heat Mass Transfer 48 4460
[15] Adams J K and Rogers D F 1973 Computer-ading Heat Transfer Analysis (New York: McGraw-Hill)
[16] Elbashbeshy E M A and Bazid M A A 2004 Appl. Math. Comput. 153 721
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 064401
[2] S. Mukhopadhyay . Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J]. Chin. Phys. Lett., 2010, 27(12): 064401
[3] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 064401
[4] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 064401
[5] SUN Liang, MA Dong-Jun, ZHANG Wei, SUN De-Jun. Onset of Unsteady Horizontal Convection in Rectangular Tank at Pr=1[J]. Chin. Phys. Lett., 2008, 25(6): 064401
[6] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 064401
[7] ZHANG Ji-Cheng, SONG Kao-Ping, LIU Li, YANG Er-Long. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis[J]. Chin. Phys. Lett., 2008, 25(5): 064401
[8] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 064401
[9] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 064401
[10] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 064401
[11] SONG Fu-Quan, JIANG Ren-Jie, BIAN Shu-Li. Measurement of Threshold Pressure Gradient of Microchannels by Static Method[J]. Chin. Phys. Lett., 2007, 24(7): 064401
[12] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 064401
[13] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 064401
[14] YANG Er-Long, SONG Kao-Ping. Displacement Mechanism of Polymer Flooding by Molecular Tribology[J]. Chin. Phys. Lett., 2006, 23(9): 064401
[15] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 064401
Viewed
Full text


Abstract