Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 064601    DOI: 10.1088/0256-307X/27/6/064601
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Flutter of Finite-Span Flexible Plates in Uniform Flow

BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun

Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
Cite this article:   
BAO Chun-Yu, TANG Chao, YIN Xie-Zhen et al  2010 Chin. Phys. Lett. 27 064601
Download: PDF(525KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The flutter instability and response of finite-span flexible plates in uniform flow are investigated experimentally. The effects of the plate aspect ratio on its dynamic responses are mainly analyzed. A hysteretic phenomenon is observed and can be described such that the plate flutters spontaneously as the flow velocity is greater than a critical value U*C and the plate returns to its stable state as the flow velocity is slowly decreased to another critical one U*D. We find that the aspect ratio has a greater effect on U*C than on U*D. The flutter frequency decreases and the amplitude increases with the increase in the flow velocity. When the flutter instability of the plate occurs, three typical flutter modes are identified and are associated with the aspect ratio and the flow velocity.

Keywords: 46.40.Jj      46.40.Ff      47.20.Ky     
Received: 01 March 2010      Published: 25 May 2010
PACS:  46.40.Jj (Aeroelasticity and hydroelasticity)  
  46.40.Ff (Resonance, damping, and dynamic stability)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/064601       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/064601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAO Chun-Yu
TANG Chao
YIN Xie-Zhen
LU Xi-Yun
[1] Guo C Q and Païdoussis M P 2000 J. Appl. Mech. 67 171
[2] Ishak A 2009 Chin. Phys. Lett. 26 034701
[3] Lighthill M J 1960 J. Fluid Mech. 9 305
[4] Argentina M and Mahadevan L 2005 Proc. Natl. Acad. Sci. U.S.A. 102 1829
[5] Eloy C, Souilliez C and Schouveiler L 2007 J. Fluids Struct. 23 904
[6] Eloy C, Lagrange R, Souilliez C and Schouveiler L 2008 J. Fluid Mech. 661 97
[7] Watanabe Y, Suzuki S, Sugihara M and Sueoka Y 2002 J. Fluids Struct. 16 529
[8] Alben S and Shelley M J 2008 Phys. Rev. Lett. 100 074301
[9] Connell B S H and Yue D K P 2007 J. Fluid Mech. 581 33
[10] Michelin S, Smith S G L and Glover B J 2008 J. Fluid Mech. 617 1
[11] Tang L and Païdoussis M P 2008 J. Sound Vib. 310 512
[12] Shelley M, Vandenberghe N and Zhang J 2005 Phys. Rev. Lett. 94 094302
[13] Jia L B and Yin X Z 2008 Phys. Rev. Lett. 100 228104
[14] Jia L B and Yin X Z 2009 Phys. Fluids 21 101704
[15] Kornecki A, Dowell E H and O'Brien J 1976 J. Sound Vib. 47 163
Related articles from Frontiers Journals
[1] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 064601
[2] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 064601
[3] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 064601
[4] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 064601
[5] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 064601
[6] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 064601
[7] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 064601
[8] ZHANG Qi-Chang, WANG Wei, LI Wei-Yi. Heteroclinic Bifurcation of Strongly Nonlinear Oscillator[J]. Chin. Phys. Lett., 2008, 25(5): 064601
[9] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 064601
[10] WANG Qi, ZHANG Hua, MIAO Guo-Qing, WEI Rong-Jue. Water Surface Wave in a Trough with Periodical Topographic Bottom[J]. Chin. Phys. Lett., 2007, 24(8): 064601
[11] DAI Zheng-De, , LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 064601
[12] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 064601
[13] MA Dong-Jun, SUN De-Jun, YIN Xie-Yuan. Axisymmetry Breaking to Travelling Waves in the Cylinder with Partially Heated Sidewall[J]. Chin. Phys. Lett., 2006, 23(6): 064601
[14] FANG Dai-Ning, SUN Yu-Xin, SOH Ai-Kah. Analysis of Frequency Spectrum of Laser-Induced Vibration of Microbeam Resonators[J]. Chin. Phys. Lett., 2006, 23(6): 064601
[15] DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun, LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J]. Chin. Phys. Lett., 2006, 23(5): 064601
Viewed
Full text


Abstract