Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 054701    DOI: 10.1088/0256-307X/27/5/054701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Capillary Rise in a Single Tortuous Capillary
CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang
chool of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei et al  2010 Chin. Phys. Lett. 27 054701
Download: PDF(571KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The impact of convolutedness of capillary on the capillary rise of wetting liquid in a single tortuous capillary is studied. By introducing tortuosity and fractal dimension for a tortuous capillary, analytical expression for time evolution of the height/weight of capillary rise is obtained. It is found that the accumulated weight of liquid imbibed into a single tortuous capillary is independent of the shape of a capillary in the early rising stage.
Keywords: 47.15.-x      05.45.Df      47.55.Nb     
Received: 21 October 2009      Published: 23 April 2010
PACS:  47.15.-x (Laminar flows)  
  05.45.Df (Fractals)  
  47.55.nb (Capillary and thermocapillary flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/054701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/054701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jian-Chao
YU Bo-Ming
MEI Mao-Fei
LUO Liang
[1] Bell J M and Cameron F K 1906 J. Phys. Chem. 10 658
[2] Lucas R 1918 Kolloid-Zeitschrift 23 15
[3] Washburn E W 1921 Phys. Rev. 17 273
[4] Popescu M N et al 2008 Langmuir 24 12710
[5] Amico S C and Lekakou C 2002 Polym. Compos. 23 264
[6] Benavente D et al 2002 Trans. Porous Media 49 59
[7] Bear J 1972 Dynamics of Fluids in Porous Media (New York: Elsevier)
[8] Wu J S et al 2009 Chin. Phys. Lett. 26 064701
[9] Yu B M and Li J H 2004 Chin. Phys. Lett. 21 1569
[10] Wheatcraft S W et al 1988 Water Resour. Res. 24 566
[11] Majumdar A 1992 Annu. Rev. Heat. Transfer 4 51
[12] Yu B M 2005 Chin. Phys. Lett. 22 158
[13] Yu B M 2008 Appl. Mech. Rev. 61 050801
[14] Yun M J et al 2008 Chin. Phys. Lett. 25 616
[15] Yu B M et al 2002 In. J. Heat Mass Transfer 45 2983
[16] Yu B M, Cai J C and Zou M Q 2009 Vadose Zone J. 8 177
[17] Horváth V K and Stanley H E 1995 Phys. Rev. E 52 5166
[18] Wang X H et al 2002 Physica A 311 320
[19] Kwon T H et al 1996 Phys. Rev. E 54 685
[20] Balankin A S et al 2006 Phys. Rev. Lett. 96 056101
[21] Brú A and Pastor J M 2006 Geoderma 134 295
[22] Liu Z F et al 2003 Chin. Phys. Lett. 20 1969
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 054701
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 054701
[3] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 054701
[4] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 054701
[5] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 054701
[6] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 054701
[7] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 054701
[8] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 054701
[9] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 054701
[10] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 054701
[11] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 054701
[12] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 054701
[13] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 054701
[14] HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 054701
[15] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 054701
Viewed
Full text


Abstract