Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 054702    DOI: 10.1088/0256-307X/27/5/054702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Intermittency and Thermalization in Turbulence
ZHU Jian-Zhou1, Mark Taylor2
1Theoretical Division and CNLS, MS B258, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. 2CCIM, MS 0370, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Cite this article:   
ZHU Jian-Zhou, Mark Taylor 2010 Chin. Phys. Lett. 27 054702
Download: PDF(576KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A dissipation rate, which grows faster than any power of the wave number in Fourier space, may be scaled to lead a hydrodynamic system to actually or potentially converge to its Galerkin truncation. Actual convergence here means the asymptotic truncation at a finite wavenumber kG above which modes have no dynamics; and, we define potential convergence for the truncation at kG which, however, grows without bound. Both types of convergence can be obtained with the dissipation rate μ[cosh (κ/κ_c)-1]that behaves as k2 (newtonian) and exp{κ/κ_c}for small and large κ/κ_c respectively. Competing physics of cascade, thermalization and dissipation are discussed for numerical Navier-Stokes turbulence, emphasizing the intermittency growth issue.
Keywords: 47.27.Gs      05.20.Jj      02.30.Jr     
Received: 30 September 2009      Published: 23 April 2010
PACS:  47.27.Gs (Isotropic turbulence; homogeneous turbulence)  
  05.20.Jj (Statistical mechanics of classical fluids)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/054702       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/054702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Jian-Zhou
Mark Taylor
[1] Fermi E, Pasta J and Ulam S 1995 Los Alamos Scientific Laboratory report LA-1940
[2] Frisch U et al 2008 Phys. Rev. Lett. 101 144501
[3] Lee T D 1952 Q. J. Mech. Appl. Math. 10 69
[4] Onsager L 1945 Letter to Lin C C, discussed extensively in Eyink G and Sreenivasan K R 2006 Rev. Mod. Phys. 78 87
[5] Zhu J Z 2005 Physics Rev. E 72 026303
[6] Boyd J P 1994 J. Sci. Comput. 9 81
[7] See, e.g., She Z S et al 1991 Nature 344 226
Chen S et al 1993 Phys. Rev. Lett. 70 {3051}
[8] Zeitlin V 2005 Phys. Lett. A 339 316
[9] Frisch U 1995 Turbulence (Cambridge: Cambridge University)
Eyink G 2008 Physica D 237 {1956}
[10] Frisch U 2006 Private Communication see also Bardos C et al arXiv:0812.0149
[11] Orszag S A 1977 in Fluid Dynamics, Proceedings of the Les Houches Summer School Section XXIV ed Balian R and Peube J L (New York: Gordon and Breach) p 237
[12] Cox C M et al 2002 J. Comput. Phys. 176 430
[13] Benzi R et al 1993 Phys. Rev. E 48 R29
[14] Zhu J Z 2006 Chin. Phys. Lett. 23 2139
[15] Schumacher J et al 2007 New J. Phys. 7 89
[16] Cichowlas C et al 2005 Phys. Rev. Lett. 95 264502 where thermalization of high modes in Galerkin-truncated Euler system was shown to work as the way of singularities of Euler equation[4] to cause energy cascade.
[17] The software VAPOR developed by NCAR is used: see Clyne J et al 2007 New J. Phys. 9 301
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 054702
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 054702
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 054702
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 054702
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 054702
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 054702
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 054702
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 054702
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 054702
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 054702
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 054702
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 054702
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 054702
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 054702
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 054702
Viewed
Full text


Abstract