Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 050503    DOI: 10.1088/0256-307X/27/5/050503
GENERAL |
Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs
LU Xiao-Qing1, Francis Austin2, CHEN Shi-Hua1
1School of Mathematics and Statistics, Wuhan University, Wuhan 430072 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong
Cite this article:   
LU Xiao-Qing, Francis Austin, CHEN Shi-Hua 2010 Chin. Phys. Lett. 27 050503
Download: PDF(384KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the cluster consensus problem in directed networks of nonlinearly coupled multi-agent systems by using pinning control. Depending on the community structure generated by the group partition of the underlying digraph, various clusters can be made coherently independent by applying feedback injections to a fraction of the agents. Sufficient conditions for cluster consensus are obtained using algebraic graph theory and matrix theory and some simulations results are included to illustrate the method.
Keywords: 05.45.Xt      05.45.Gg     
Received: 12 January 2010      Published: 23 April 2010
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/050503       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/050503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Xiao-Qing
Francis Austin
CHEN Shi-Hua
[1] Zhang Y, Lu S and Wang Y H 2009 Chin. Phys. Lett. 26 090501
[2] Ji D H, Park J H, Yoo W J, Won S C and Lee S M 2010 Phys. Lett. A 374 1218
[3] Guan J B 2010 Chin. Phys. Lett. 27 020502
[4] Sun M, Zeng C Y and Tian L X 2009 Chin. Phys. Lett. 26 010501
[5] Tang J, Jia Y, Yi M, Ma J and Yu G 2008 Chin. Phys. Lett. 25 1149
[6] Sun X J and Lu Q S 2009 Chin. Phys. Lett. 26 060507
[7] Saber R O and Murray R M 2004 IEEE Trans. Autom. Contral. 49 1520
[8] Moreau L 2005 IEEE Trans. Autom. Control. 50 169
[9] {10} Ren W and Beard R W 2005 IEEE Trans. Autom. Control. 50 655
[10] Olfati-Saber R 2006 IEEE Trans. Autom. Control. 51 401
[11] Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177
[12] {14} Sun Y Z and Ruan J 2008 Chin. Phys. Lett. 25 3493
[13] {15} Liu X W, Chen T P and Lu W L 2009 Phys. Lett. A 373 3122
[14] Su H S and Wang X F 2009 IEEE Trans. Autom. Control. 54 293
[15] Park J H, Lee S M and Jung H Y 2009 J. Optim. Theorol. Appl. 143 357
[16] Horn R and Jornson C 1985 Matrix Analysis (New York: Cambridge University)
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 050503
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 050503
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 050503
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 050503
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 050503
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 050503
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 050503
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 050503
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 050503
[10] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 050503
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 050503
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 050503
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 050503
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 050503
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 050503
Viewed
Full text


Abstract