Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 050502    DOI: 10.1088/0256-307X/27/5/050502
GENERAL |
Adaptive Function Projective Synchronization of Discrete Chaotic Systems with Unknown Parameters
WU Zhao-Yan1, FU Xin-Chu2
1College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022 2Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
WU Zhao-Yan, FU Xin-Chu 2010 Chin. Phys. Lett. 27 050502
Download: PDF(312KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Adaptive function projective synchronization of discrete-time chaotic systems with unknown parameters is considered. Based on the contraction mapping theorem, proper controllers and estimators are designed. Illustrative examples are provided to show the effectiveness of this method.
Keywords: 05.45.Xt      02.30.Jr      42.65.Tg     
Received: 17 March 2010      Published: 23 April 2010
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Jr (Partial differential equations)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/050502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/050502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Zhao-Yan
FU Xin-Chu
[1] Xi Y L, Wu Z Y and Fu X C 2009 Cha. Soli. Fract. 40 635
[2] Feng C F, Zhang Y and Wang Y H 2006 Chin. Phys. Lett. 23 1418
[3] Li G H 2007 Cha. Soli. Frac. 32 1786
[4] Creveling D R, Jeanne J M and Abarbanel H D I 2008 Phys. Lett. A 372 2043
[5] Yu W, Chen G, Cao J, Lü J and Parlitz U 2007 Phys. Rev. E 75 067201
[6] Ge Z M and Yang C H 2007 Physica D 231 87
[7] Yu D C, Righero M and Kocarev L 2006 Phys. Rev. Lett. 97 188701
[8] Zhou J and Lu J A 2007 Physica A 386 481
[9] Wu X Q 2008 Physica A 387 997
[10] Liao T L and Lin S H 1999 J. Franklin Institute 336 925
[11] Chang J F, Yang Y S, Liao T L and Yan J J 2008 Exp. Sys. with Appl. 35 2074
[12] Chen Y and Li X 2007 Z. Naturfor. 62a 22
[13] Lü J H, Han F L, Yu X H and Chen G R 2004 Automatica 40 1677
[14] Lü J H and Chen G R 2006 Int. J. Bifur. Chaos 16 775
[15] Vassiliadis D 1994 Physica D 71 319
[16] Yang Y, Ma X and Zhang H 2006 Cha. Soli. Frac. 28 244
[17] Chen G and Dong X 1998 From Chaos to Order (Singapore: World Scientific) chap 1 p 10
[18] Hitzl D L and Zele F 1985 Physica D 14 305
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[3] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[6] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[7] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 050502
[8] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 050502
[9] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 050502
[10] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 050502
[11] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 050502
[12] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 050502
[13] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 050502
[14] ZHAO Guang-Zhen, XIAO Xiao-Sheng, MEI Jia-Wei, YANG Chang-Xi. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser[J]. Chin. Phys. Lett., 2012, 29(3): 050502
[15] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 050502
Viewed
Full text


Abstract